Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone

Schemenz, V., Gjardy, R. A., Chamasemani, F., Roschger, A., Roschger, P., Zaslansky, P., et al. (2020). Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone. Journal of Structural Biology, 212(2): 107616. doi:10.1016/j.jsb.2020.107616.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 12MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schemenz, Victoria1, Autor                 
Gjardy, Ralph André2, Autor           
Chamasemani, F. , Autor
Roschger, Andreas2, Autor           
Roschger, P., Autor
Zaslansky, P., Autor
Helfen, L., Autor
Burghammer, M., Autor
Fratzl, Peter3, Autor           
Weinkamer, Richard1, Autor           
Brunner, R., Autor
Willie, B., Autor
Wagermaier, Wolfgang2, Autor           
Affiliations:
1Richard Weinkamer, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863295              
2Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              
3Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: endochondral ossification, lacuno-canalicular network, qBEI, CLSM, SAXS, µCT
 Zusammenfassung: Various tissue types, including fibrous connective tissue, bone marrow, cartilage, woven and lamellar bone coexist in healing bone. Similar to all bone tissue type, healing bone contains a lacuno-canalicular network (LCN) housing osteocytes that are known to orchestrate bone remodeling in healthy bone by sensing mechanical strains and translating them into biochemical signals. The structure of the LCN is also hypothesized to influence mineralization processes. Hence, the aim of the present study was to visualize and correlate spatial variations in the LCN topology with mineral characteristics, within and at the interfaces of the different tissue types that comprise healing bone. We applied a correlative multi-method approach to visualize the LCN architecture and quantify mineral particle size and orientation within healing femoral bone in a mouse osteotomy model (26 weeks old C57BL/6 mice). This approach revealed structural differences across several length scales during endochondral ossification within the following regions: calcified cartilage, bony callus, cortical bone and the transition zone between the cortical region and callus that developed during 21 days after the osteotomy. In this transition zone, we observed a continuous convergence of mineral characteristics and osteocyte lacunae shape as well as discontinuities in the lacunae volume and LCN connectivity. The bony callus exhibits a 34% higher lacunae number density with 40% larger lacunar volume compared to cortical bone. The presented correlations between LCN architecture and mineral characteristics improves our understanding of how bone develops during healing and may indicate a contribution of osteocytes to bone (re)modeling.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-09-112020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.jsb.2020.107616
PMID: 0596
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Berlin-Brandenburg School for Regenerative Therapies GSC 203
Grant ID : -
Förderprogramm : (272944896)
Förderorganisation : Deutsche Forschungsgemeinschaft
Projektname : Integrated Computational Material, Process and Product Engineering (IC-MPPE)
Grant ID : -
Förderprogramm : COMET (859480)
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Structural Biology
  Kurztitel : J. Struct. Biol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Diego, CA : Elsevier
Seiten: - Band / Heft: 212 (2) Artikelnummer: 107616 Start- / Endseite: - Identifikator: ISSN: 1047-8477