English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Giant Exciton Mott Density in Anatase TiO2

Baldini, E., Palmieri, T., Dominguez, A., Rubio, A., & Chergui, M. (2020). Giant Exciton Mott Density in Anatase TiO2. Physical Review Letters, 125(11): 116403. doi:10.1103/PhysRevLett.125.116403.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0007-0DFD-F Version Permalink: http://hdl.handle.net/21.11116/0000-0007-0DFE-E
Genre: Journal Article

Files

show Files
hide Files
:
PhysRevLett.125.116403.pdf (Publisher version), 419KB
Name:
PhysRevLett.125.116403.pdf
Description:
Open Access. - Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
© the Author(s)
:
MottDensity_SM.pdf (Supplementary material), 2MB
Name:
MottDensity_SM.pdf
Description:
Supplemental Material. - I. FIRST-PRINCIPLES CALCULATIONS II. SINGLE CRYSTAL GROWTH AND CHARACTERIZATION III. EXPERIMENTAL SET-UP IV. ESTIMATE OF THE PHOTOEXCITED CARRIER DENSITY V. LINESHAPE ANALYSIS VI. HIGH TIME RESOLUTION DATA VII. RELEVANCE OF THE HIGH MOTT DENSITY IN ANATASE TIO2 VIII. COMPARISON WITH OTHER MATERIALS
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
Locator:
https://arxiv.org/abs/2007.10051 (Preprint)
Description:
-

Creators

show
hide
 Creators:
Baldini, E.1, 2, Author
Palmieri, T.1, Author
Dominguez, A.3, 4, 5, Author
Rubio, A.6, 7, 8, Author              
Chergui, M.1, Author
Affiliations:
1Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ou_persistent22              
2Department of Physics, Massachusetts Institute of Technology, ou_persistent22              
3Bremen Center for Computational Material Science (BCCMS), ou_persistent22              
4Shenzhen JL Computational Science and Applied Research Institute (CSAR), ou_persistent22              
5Beijing Computational Research Center (CSRC), ou_persistent22              
6Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
7Departamento Física de Materiales, Universidad del País Vasco, ou_persistent22              
8Center for Computational Quantum Physics, The Flatiron Institute, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Elucidating the carrier density at which strongly bound excitons dissociate into a plasma of uncorrelated electron-hole pairs is a central topic in the many-body physics of semiconductors. However, there is a lack of information on the high-density response of excitons absorbing in the near-to-mid ultraviolet, due to the absence of suitable experimental probes in this elusive spectral range. Here, we present a unique combination of many-body perturbation theory and state-of-the-art ultrafast broadband ultraviolet spectroscopy to unveil the interplay between the ultraviolet-absorbing two-dimensional excitons of anatase TiO2 and a sea of electron-hole pairs. We discover that the critical density for the exciton Mott transition in this material is the highest ever reported in semiconductors. These results deepen our knowledge of the exciton Mott transition and pave the route toward the investigation of the exciton phase diagram in a variety of wide-gap insulators.

Details

show
hide
Language(s): eng - English
 Dates: 2020-07-042020-02-272020-08-172020-09-102020-09-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevLett.125.116403
arXiv: 2007.10051
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: - Volume / Issue: 125 (11) Sequence Number: 116403 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1