Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach

Kim, Y. C., & Hummer, G. (2012). Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach. Biochimica et Biophysica Acta: BBA, 1817(4), 526-536. doi:10.1016/j.bbabio.2011.09.004.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kim, Young C.1, Autor
Hummer, Gerhard2, Autor                 
Affiliations:
1External Organizations, ou_persistent22              
2Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Algorithms, Animals, Biological Transport, Cattle, Electron Transport Complex IV, Kinetics, Models, Biological, Models, Molecular, Protein Structure, Tertiary, Protons
 Zusammenfassung: Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2011-08-312011-05-182011-09-062011-09-162012-04
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.bbabio.2011.09.004
BibTex Citekey: kim_proton-pumping_2012
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biochimica et Biophysica Acta : BBA
  Andere : Biochimica et Biophysica Acta (BBA) - Biomembranes
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 1817 (4) Artikelnummer: - Start- / Endseite: 526 - 536 Identifikator: Anderer: 1879-2642
CoNE: https://pure.mpg.de/cone/journals/resource/18792642