Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Reversible membrane deformations by straight DNA origami filaments.

Franquelim, H. G., Dietz, H., & Schwille, P. (2020). Reversible membrane deformations by straight DNA origami filaments. Soft Matter, 17, 276-287. doi:10.1039/d0sm00150c.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
d0sm00150c.pdf (Verlagsversion), 7MB
Name:
d0sm00150c.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
Open Access
:
d0sm00150c1.pdf (Ergänzendes Material), 2MB
Name:
d0sm00150c1.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Franquelim, Henri G.1, Autor           
Dietz, Hendrik2, Autor
Schwille, Petra1, Autor           
Affiliations:
1Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Membrane-active cytoskeletal elements, such as FtsZ, septin or actin, form filamentous polymers able to induce and stabilize curvature on cellular membranes. In order to emulate the characteristic dynamic self-assembly properties of cytoskeletal subunits in vitro, biomimetic synthetic scaffolds were here developed using DNA origami. In contrast to our earlier work with pre-curved scaffolds, we specifically assessed the potential of origami mimicking straight filaments, such as actin and microtubules, by origami presenting cholesteryl anchors for membrane binding and additional blunt end stacking interactions for controllable polymerization into linear filaments. By assessing the interaction of our DNA nanostructures with model membranes using fluorescence microscopy, we show that filaments can be formed, upon increasing MgCl2 in solution, for structures displaying blunt ends; and can subsequently depolymerize, by decreasing the concentration of MgCl2. Distinctive spike-like membrane protrusions were generated on giant unilamellar vesicles at high membrane-bound filament densities, and the presence of such deformations was reversible and shown to correlate with the MgCl2-triggered polymerization of DNA origami subunits into filamentous aggregates. In the end, our approach reveals the formation of membrane-bound filaments as a minimal requirement for membrane shaping by straight cytoskeletal-like objects.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-052020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 32406895
DOI: 10.1039/d0sm00150c
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : SFB-863 – Project ID 111166240
Grant ID : -
Förderprogramm : (111166240)
Förderorganisation : Deutsche Forschungsgemeinschaft

Quelle 1

einblenden:
ausblenden:
Titel: Soft Matter
  Kurztitel : Soft Matter
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, UK : Royal Society of Chemistry
Seiten: - Band / Heft: 17 Artikelnummer: - Start- / Endseite: 276 - 287 Identifikator: ISSN: 1744-683X
CoNE: https://pure.mpg.de/cone/journals/resource/1744-683X