hide
Free keywords:
-
Abstract:
Tuning the fine structure of carbon support is crucial for modifying the metal-support interface (MSI) in order to harvest a high-performance catalysis. Herein, a core-shell sp(3)@sp(2) nanocarbon (nano-diamond@graphene, ND@G) and a pure sp(2) carbon derivative (onion-like carbon, OLC) were applied to support Pd nanoparticles. We found that Pd/ND@G displayed a superior catalytic activity for CO oxidation reaction with a TOF of 2.9 times higher than that of Pd/OLC at 46 degrees C. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and ambient pressure Xray photoelectron spectroscopy (AP-XPS) revealed that, different with the Pd/OLC system, a unique interface microstructure was formed in Pd/ND@G, which not only provides a high exposure of active sites, but also enhances the Pd surface reactivity toward oxygen species, thus leading to a superior catalytic activity of Pd/ND@G. Moreover, the temperature-programmed surface reaction (TPSR) results showed that CO oxidation on Pd/ND@G undergoes an unusual termolecular Eley-Rideal (TER) mechanism, which has a lower energy barrier as compared to the traditional Langmuir-Hinshelwood (LH) and ER mechanism. (C) 2019 Elsevier Ltd. All rights reserved.