English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Effect of Ligand Electronics on the Reversible Catalytic Hydrogenation of CO2 to Formic Acid Using Ruthenium Polyhydride Complexes: A Thermodynamic and Kinetic Study

Estes, D. P., Leutzsch, M., Schubert, L., Bordet, A., & Leitner, W. (2020). Effect of Ligand Electronics on the Reversible Catalytic Hydrogenation of CO2 to Formic Acid Using Ruthenium Polyhydride Complexes: A Thermodynamic and Kinetic Study. ACS Catalysis, 10(5), 2990-2998. doi:10.1021/acscatal.0c00404.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Estes, Deven P.1, Author
Leutzsch, Markus2, Author           
Schubert, Lukas3, Author           
Bordet, Alexis4, Author           
Leitner, Walter4, 5, Author           
Affiliations:
1external, ou_persistent22              
2Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445623              
3Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023871              
4Research Department Leitner, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023872              
5Institut für Technische Chemie und Makromolekulare Chemie, Rheinisch‐Westfälische Technische Hochschule Aachen, Worringer Weg 1, 52074 Aachen, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Hydrogenation of CO2 to formic acid or formates is often carried out using catalysts of the type H4Ru(PR3)(3) (1). These catalysts are also active for the reverse reaction, i.e., the decomposition of formic acid to H-2 and CO2. While numerous catalysts have been synthesized for reactions in both directions, the factors controlling the elementary steps of the catalytic cycle remain poorly understood. In this work, we synthesize a series of compounds of type H4Ru(P(C6H4R)(3))(3) containing both electron-donating and electron-withdrawing groups and analyze their influence on the kinetic and thermodynamic parameters of CO2 insertion and deinsertion. The data are correlated with the catalytic performance of the complexes through linear free-energy relationships. The results show that formic acid dissociation from the catalyst is rate-determining during CO2 hydrogenation, while deinsertion is critical for the decomposition reaction.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000518876300010
DOI: 10.1021/acscatal.0c00404
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Catalysis
  Abbreviation : ACS Catal.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : ACS
Pages: - Volume / Issue: 10 (5) Sequence Number: - Start / End Page: 2990 - 2998 Identifier: ISSN: 2155-5435
CoNE: https://pure.mpg.de/cone/journals/resource/2155-5435