English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Operator Inference and Physics-Informed Learning of Low-Dimensional Models for Incompressible Flows

Benner, P., Goyal, P. K., Heiland, J., & Pontes Duff, I. (2022). Operator Inference and Physics-Informed Learning of Low-Dimensional Models for Incompressible Flows. Electronic Transactions on Numerical Analysis: Special Issue SciML, 56, 28-51. doi:10.1553/etna_vol56s28.

Item is

Files

show Files
hide Files
:
2010.06701.pdf (Preprint), 2MB
Name:
2010.06701.pdf
Description:
File downloaded from arXiv at 2020-10-15 10:01
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Benner, Peter1, 2, Author           
Goyal, Pawan Kumar1, Author           
Heiland, Jan1, 2, Author           
Pontes Duff, Igor1, Author           
Affiliations:
1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738141              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show

Details

show
hide
Language(s):
 Dates: 2020-10-132022
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2010.06701
DOI: 10.1553/etna_vol56s28
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Electronic Transactions on Numerical Analysis : Special Issue SciML
  Other : ETNA
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Kent, OH : Kent State University
Pages: - Volume / Issue: 56 Sequence Number: - Start / End Page: 28 - 51 Identifier: ISSN: 1068-9613
CoNE: https://pure.mpg.de/cone/journals/resource/954926402638