Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A fully automated approach to calculate the melting temperature of elemental crystals

Zhu, L.-F., Janßen, J., Ishibashi, S., Körmann, F., Grabowski, B., & Neugebauer, J. (2021). A fully automated approach to calculate the melting temperature of elemental crystals. Computational Materials Science, 187(11): 110065. doi:10.1016/j.commatsci.2020.110065.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
A fully automated approach to calculate the melting temperature of elemental crystals _ Elsevier Enhanced Reader.pdf (Verlagsversion), 3MB
Name:
A fully automated approach to calculate the melting temperature of elemental crystals _ Elsevier Enhanced Reader.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhu, Li-Fang1, Autor           
Janßen, Jan2, Autor           
Ishibashi, Shoji3, 4, Autor           
Körmann, Fritz2, 5, Autor           
Grabowski, Blazej6, Autor           
Neugebauer, Jörg3, Autor           
Affiliations:
1Ab Initio Thermodynamics, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863338              
2Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
3Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
4Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568, Japan, ou_persistent22              
5Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands, ou_persistent22              
6Institute of Materials Science, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Crystal structure; Metastable phases; Molecular dynamics; Phase interfaces, Arbitrary potentials; Convergence criterion; Human intervention; Interatomic potential; Interface structures; Molecular dynamic calculation; Numerical precision; Technical details, Melting point
 Zusammenfassung: The interface method is a well established approach for predicting melting points of materials using interatomic potentials. However, applying the interface method is tedious and involves significant human intervention. The whole procedure involves several successive tasks: estimate a rough melting point, set up the interface structure, run molecular dynamic calculations and analyze the data. Loop calculations are necessary if the predicted melting point is different from the estimated one by more than a certain convergence criterion, or if full melting/solidification occurs. In this case monitoring the solid–liquid phase transition in the interface structure becomes critical. As different initial random seeds for the molecular dynamic simulations within the interface method induce slightly different melting points, a few ten or hundred interface method calculations with different random seeds are necessary for performing a statistical analysis on these melting points. Considering all these technical details, the work load for manually executing and combining the various involved scripts and programs quickly becomes prohibitive. To simplify and automatize the whole procedure, we have implemented the interface method into pyiron (http://pyiron.org). Our fully automatized procedure allows to efficiently and precisely predict melting points of stable unaries represented by arbitrary potentials with only two user-specified parameters (interatomic potential file and element). For metastable or dynamically unstable unary phases, the crystal structure needs to be provided as an additional parameter. We have applied our automatized approach on fcc Al, Ni, dynamically unstable bcc Ti and hcp Mg and employed a large set of available interatomic potentials. Melting points for classical interatomic potentials of these metals have been obtained with a numerical precision well below 1 K. © 2020 The Authors

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-02-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.commatsci.2020.110065
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : We would like to thank Won-Seok Ko for his assistance with the interface method, Osamu Waseda for the kernel-density based solid–liquid detector, and Andrew Ian Duff and Alexander Shapeev for their help in fitting potentials. Funding by the European Research Council (ERC) under the EU’s Horizon 2020 Research and Innovation Programme (Grant No. 639211), by the Max-Planck Research network on “Big-data-driven Material science” (BigMax), NWO/STW (VIDI grant 15707) and by Deutsche Forschungsgemeinschaft (DFG, 405621217) are gratefully acknowledged.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Computational Materials Science
  Kurztitel : Comput. Mater. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: 10 Band / Heft: 187 (11) Artikelnummer: 110065 Start- / Endseite: - Identifikator: ISSN: 0927-0256
CoNE: https://pure.mpg.de/cone/journals/resource/954925567766