English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation

Cox, N., Retegan, M., Neese, F., Pantazis, D. A., Boussac, A., & Lubitz, W. (2014). Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation. Science, 345(6198), 804-808. doi:10.1126/science.1254910.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Cox, Nicholas1, Author              
Retegan, Marius2, Author              
Neese, Frank2, Author              
Pantazis, Dimitrios A.2, Author              
Boussac, Alain3, Author
Lubitz, Wolfgang1, Author              
Affiliations:
1Research Department Lubitz, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023873              
2Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              
3Institut de Biologie et de Technologies de Saclay, CNRS UMR 8221, Commissariat à l’Énergie Atomique (CEA) Saclay, 91191 Gif-sur-Yvette, France, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor.

Details

show
hide
Language(s): eng - English
 Dates: 2014-08-15
 Publication Status: Published in print
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1126/science.1254910
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science
  Other : Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Association for the Advancement of Science
Pages: - Volume / Issue: 345 (6198) Sequence Number: - Start / End Page: 804 - 808 Identifier: ISSN: 0036-8075
CoNE: https://pure.mpg.de/cone/journals/resource/991042748276600_1