Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  What Can We Learn from a Biomimetic Model of Nature’s Oxygen-Evolving Complex?

Paul, S., Cox, N., & Pantazis, D. A. (2017). What Can We Learn from a Biomimetic Model of Nature’s Oxygen-Evolving Complex? Inorganic Chemistry, 56(7), 3875-3888. doi:10.1021/acs.inorgchem.6b02777.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Paul, Satadal1, Autor           
Cox, Nicholas2, 3, Autor           
Pantazis, Dimitrios A.1, Autor           
Affiliations:
1Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              
2Research Department Lubitz, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023873              
3Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: A recently reported synthetic complex with a Mn4CaO4 core represents a remarkable structural mimic of the Mn4CaO5 cluster in the oxygen-evolving complex (OEC) of photosystem II (Zhang et al., Science2015, 348, 690). Oxidized samples of the complex show electron paramagnetic resonance (EPR) signals at g ≈ 4.9 and 2, similar to those associated with the OEC in its S2 state (g ≈ 4.1 from an S = 5/2 form and g ≈ 2 from an S = 1/2 form), suggesting similarities in the electronic as well as geometric structure. We use quantum-chemical methods to characterize the synthetic complex in various oxidation states, to compute its magnetic and spectroscopic properties, and to establish connections with reported data. Only one energetically accessible form is found for the oxidized “S2 state” of the complex. It has a ground spin state of S = 5/2, and EPR simulations confirm it can be assigned to the g ≈ 4.9 signal. However, no valence isomer with an S = 1/2 ground state is energetically accessible, a conclusion supported by a wide range of methods, including density matrix renormalization group with full valence active space. Alternative candidates for the g ≈ 2 signal were explored, but no low-spin/low-energy structure was identified. Therefore, our results suggest that despite geometric similarities the synthetic model does not mimic the valence isomerism that is the hallmark of the OEC in its S2 state, most probably because it lacks a coordinatively flexible oxo bridge. Only one of the observed EPR signals can be explained by a structurally intact high-spin one-electron-oxidized form, while the other originates from an as-yet-unidentified rearrangement product. Nevertheless, this model provides valuable information for understanding the high-spin EPR signals of both the S1 and S2 states of the OEC in terms of the coordination number and Jahn–Teller axis orientation of the Mn ions, with important consequences for the development of magnetic spectroscopic probes to study S-state intermediates immediately prior to O–O bond formation.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2016-11-172017-03-142017-04-03
 Publikationsstatus: Erschienen
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.inorgchem.6b02777
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Inorganic Chemistry
  Kurztitel : Inorg. Chem.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 56 (7) Artikelnummer: - Start- / Endseite: 3875 - 3888 Identifikator: ISSN: 0020-1669
CoNE: https://pure.mpg.de/cone/journals/resource/0020-1669