English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Kinetic gating of the proton pump in cytochrome c oxidase

Kim, Y. C., Wikström, M., & Hummer, G. (2009). Kinetic gating of the proton pump in cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 13707-13712. doi:10.1073/pnas.0903938106.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kim, Young C.1, Author
Wikström, Mårten2, Author
Hummer, Gerhard1, Author                 
Affiliations:
1Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA, ou_persistent22              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: Animals, Cattle, Cell Membrane, Electrochemistry, Electron Transport Complex IV, Electrons, Hydrogen-Ion Concentration, Kinetics, Mitochondria, Mutation, Oxygen, Phenotype, Protons, Thermodynamics, Water
 Abstract: Cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain, reduces oxygen to water and uses the released energy to pump protons across a membrane. Here, we use kinetic master equations to explore the energetic and kinetic control of proton pumping in CcO. We construct models consistent with thermodynamic principles, the structure of CcO, experimentally known proton affinities, and equilibrium constants of intermediate reactions. The resulting models are found to capture key properties of CcO, including the midpoint redox potentials of the metal centers and the electron transfer rates. We find that coarse-grained models with two proton sites and one electron site can pump one proton per electron against membrane potentials exceeding 100 mV. The high pumping efficiency of these models requires strong electrostatic couplings between the proton loading (pump) site and the electron site (heme a), and kinetic gating of the internal proton transfer. Gating is achieved by enhancing the rate of proton transfer from the conserved Glu-242 to the pump site on reduction of heme a, consistent with the predictions of the water-gated model of proton pumping. The model also accounts for the phenotype of D-channel mutations associated with loss of pumping but retained turnover. The fundamental mechanism identified here for the efficient conversion of chemical energy into an electrochemical potential should prove relevant also for other molecular machines and novel fuel-cell designs.

Details

show
hide
Language(s): eng - English
 Dates: 2009-04-092009-06-302009-08-18
 Publication Status: Issued
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1073/pnas.0903938106
BibTex Citekey: kim_kinetic_2009
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 106 (33) Sequence Number: - Start / End Page: 13707 - 13712 Identifier: ISSN: 1091-6490