Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Light-driven directional ion transport for enhanced osmotic energy harvesting

Xiao, K., Giusto, P., Chen, F., Chen, R., Heil, T., Cao, S., et al. (2021). Light-driven directional ion transport for enhanced osmotic energy harvesting. National Science Review, 8(8): nwaa231. doi:10.1093/nsr/nwaa231.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 3MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Xiao, Kai1, Autor           
Giusto, Paolo2, Autor                 
Chen, Fengxiang, Autor
Chen, Ruotian, Autor
Heil, Tobias3, Autor           
Cao, Shaowen4, Autor           
Chen, Lu4, Autor           
Fan, Fengtao, Autor
Jiang, Lei, Autor
Affiliations:
1Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863288              
2Paolo Giusto, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3245192              
3Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              
4Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Inhalt

einblenden:
ausblenden:
Schlagwörter: ion pump, ion transport, nanofluidic, porous membrane, carbon nitride
 Zusammenfassung: Light-driven ion (proton) transport is a crucial process both for photosynthesis of green plants and solar energy harvesting of some archaea. Here, we describe that TiO2/C3N4 semiconductor heterojunction nanotube membrane can realize a similar light-driven directional ion transport performance as biological systems. This heterojunction system can be fabricated by two simple deposition steps. Under unilateral illumination, TiO2/C3N4 heterojunction nanotube membrane can generate a photocurrent of about 9 μA/cm2, corresponding to a pumping stream of ∼5500 ions per second per nanotube. By changing the position of TiO2 and C3N4, a reverse equivalent ionic current can also be realized. Directional transport of photo generated electrons and holes results in a transmembrane potential, which is the basis of the light-driven ion transport phenomenon. As a proof of concept, we also show that this system can be used for enhanced osmotic energy generation. The artificial light-driven ion transport system proposed here offers a further step forward on the roadmap for the development of ionic photoelectric conversion and their integration in other applications, e.g. water desalination.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-09-082021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/nsr/nwaa231
BibTex Citekey: 10.1093/nsr/nwaa231
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: National Science Review
  Andere : NSR / Chinese Academy of Sciences
  Kurztitel : NSR
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Oxford University Press
Seiten: - Band / Heft: 8 (8) Artikelnummer: nwaa231 Start- / Endseite: - Identifikator: ISSN: 2095-5138