English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis

Wei, X., Franke, J., Ost, M., Wardelmann, K., Börno, S., Timmermann, B., et al. (2020). Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis. Journal of Cachexia, Sarcopenia and Muscle, 2020: 12632. doi:10.1002/jcsm.12632.

Item is

Files

show Files
hide Files
:
Wei_2020.pdf (Publisher version), 38MB
Name:
Wei_2020.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© 2020 The Authors

Locators

show

Creators

show
hide
 Creators:
Wei, Xiaoyan , Author
Franke, Julia, Author
Ost, Mario, Author
Wardelmann, Kristina , Author
Börno, Stefan1, Author           
Timmermann, Bernd1, Author           
Meierhofer, David2, Author           
Kleinridders, Andre , Author
Klaus, Susanne, Author
Stricker, Sigmar, Author
Affiliations:
1Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479670              
2Mass Spectrometry (Head: David Meierhofer), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479669              

Content

show
hide
Free keywords: Neurofibromatosis / NF1; Myopathy; Muscle atrophy; Muscle metabolism; Muscle fibre type; AMPK
 Abstract: Background
Neurofibromatosis type 1 (NF1) is a multi‐organ disease caused by mutations in neurofibromin 1 (NF1). Amongst other features, NF1 patients frequently show reduced muscle mass and strength, impairing patients' mobility and increasing the risk of fall. The role of Nf1 in muscle and the cause for the NF1‐associated myopathy are mostly unknown.

Methods
To dissect the function of Nf1 in muscle, we created muscle‐specific knockout mouse models for NF1, inactivating Nf1 in the prenatal myogenic lineage either under the Lbx1 promoter or under the Myf5 promoter. Mice were analysed during prenatal and postnatal myogenesis and muscle growth.

Results
Nf1Lbx1 and Nf1Myf5 animals showed only mild defects in prenatal myogenesis. Nf1Lbx1 animals were perinatally lethal, while Nf1Myf5 animals survived only up to approximately 25 weeks. A comprehensive phenotypic characterization of Nf1Myf5 animals showed decreased postnatal growth, reduced muscle size, and fast fibre atrophy. Proteome and transcriptome analyses of muscle tissue indicated decreased protein synthesis and increased proteasomal degradation, and decreased glycolytic and increased oxidative activity in muscle tissue. High‐resolution respirometry confirmed enhanced oxidative metabolism in Nf1Myf5 muscles, which was concomitant to a fibre type shift from type 2B to type 2A and type 1. Moreover, Nf1Myf5 muscles showed hallmarks of decreased activation of mTORC1 and increased expression of atrogenes. Remarkably, loss of Nf1 promoted a robust activation of AMPK with a gene expression profile indicative of increased fatty acid catabolism. Additionally, we observed a strong induction of genes encoding catabolic cytokines in muscle Nf1Myf5 animals, in line with a drastic reduction of white, but not brown adipose tissue.

Conclusions
Our results demonstrate a cell autonomous role for Nf1 in myogenic cells during postnatal muscle growth required for metabolic and proteostatic homeostasis. Furthermore, Nf1 deficiency in muscle drives cross‐tissue communication and mobilization of lipid reserves.

Details

show
hide
Language(s): eng - English
 Dates: 2020-09-102020-10-19
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/jcsm.12632
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Cachexia, Sarcopenia and Muscle
Source Genre: Journal
 Creator(s):
Anker, Stefan D.1, Editor
von Haehling, Stephan1, Editor
Affiliations:
1 Society on Sarcopenia, Cachexia and Wasting Disorders, ou_persistent22            
Publ. Info: Hoboken, New Jersey : John Wiley & Sons, Inc.
Pages: - Volume / Issue: 2020 Sequence Number: 12632 Start / End Page: - Identifier: ISSN: 2190-6009 (online)