English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cysteine oxidation and disulfide formation in the ribosomal exit tunnel

Schulte, L., Mao, J., Reitz, J., Sreeramulu, S., Kudlinzki, D., Hodirnau, V.-V., et al. (2020). Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications, 11(1): 5569. doi:10.1038/s41467-020-19372-x.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Schulte, Linda1, Author
Mao, Jiafei2, Author
Reitz, Julian3, Author
Sreeramulu, Sridhar1, Author
Kudlinzki, Denis1, Author
Hodirnau, Victor-Valentin 3, Author
Meier-Credo, Jakob4, Author                 
Saxena, Krishna1, Author
Buhr, Florian1, Author
Langer, Julian David4, Author                 
Blackledge, Martin5, Author
Frangakis, Achilleas S. 3, Author
Glaubitz, Clemens2, Author
Schwalbe, Harald1, Author
Affiliations:
1Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany, ou_persistent22              
2Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt, Germany, ou_persistent22              
3Institute for Biophysics, Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany, ou_persistent22              
4Proteomics and Mass Spectrometry, Max Planck Institute of Biophysics, Max Planck Society, ou_3262216              
5Institute de Biologie Structurale, Grenoble, France, ou_persistent22              

Content

show
hide
Free keywords: Cryoelectron microscopy; Molecular modelling; Solution-state NMR; Structural biology
 Abstract: Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding.

Details

show
hide
Language(s): eng - English
 Dates: 2020-09-042020-10-082020-11-04
 Publication Status: Published online
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41467-020-19372-x
PMID: 33149120
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 11 (1) Sequence Number: 5569 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723