English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Modelling the impact of gas-phase pyruvic acid on acetaldehyde and peroxy radical formation in the boreal forest

Eger, P. G., Schuladen, J., Sobanski, N., Fischer, H., Karu, E., Williams, J., et al. (2020). Modelling the impact of gas-phase pyruvic acid on acetaldehyde and peroxy radical formation in the boreal forest. Atmospheric Chemistry and Physics Discussions, 20. doi:10.5194/acp-2020-975.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Eger, Philipp G.1, Author           
Schuladen, Jan1, Author           
Sobanski, Nicolas1, Author           
Fischer, Horst1, Author           
Karu, Einar1, Author           
Williams, Jonathan1, Author           
Vakkari, Ville, Author
Lelieveld, Jos1, Author           
Crowley, John N.1, Author           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: Based on the first measurements of gas-phase pyruvic acid (CH3C(O)C(O)OH) in the boreal forest, we derive effective emission rates of pyruvic acid and compare them with monoterpene emission rates over the diel cycle. Using a data-constrained box-model, we determine the impact of pyruvic acid photolysis on the formation of acetaldehyde (CH3CHO) and the peroxy radicals CH3C(O)O2, CH3O2 and HO2 during an autumn (IBAIRN) and summer (HUMPPA) campaign at the same site. The results are dependent on the photodissociation mechanism of pyruvic acid and we examine different scenarios in which the main photolysis products are either acetaldehyde or the CH3C(O)O2 radical, with different overall quantum yields. If CH3CHO is taken to be the main product (as presently recommended by evaluation panels) we find that pyruvic acid photolysis can be a dominant source of this aldehyde in the boreal forest with a contribution of 79 % (IBAIRN) and 94 % (HUMPPA) and may help explain the high acetaldehyde levels observed during HUMPPA. On the other hand, if photolysis leads mainly to the formation of radicals, the emission of pyruvic acid has a profound impact on the rates of formation of peroxy radicals (with a contribution of ~20–50 %) and shifts the onset of radical production to earlier in the morning when actinic flux is dominated by wavelengths that are too long to initiate efficient ozone photolysis but which are absorbed by pyruvic acid.

Details

show
hide
Language(s): eng - English
 Dates: 2020-10-20
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/acp-2020-975
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics Discussions
  Abbreviation : Atmos. Chem. Phys. Discuss.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geophysical Society, Copernicus Publ.
Pages: 27 Volume / Issue: 20 Sequence Number: - Start / End Page: - Identifier: ISSN: 1680-7367
CoNE: https://pure.mpg.de/cone/journals/resource/111076360006006