English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Cold cloud microphysical process rates in a global chemistry-climate model

Bacer, S., Sullivan, S. C., Tost, H., Lelieveld, J., & Pozzer, A. (2020). Cold cloud microphysical process rates in a global chemistry-climate model. Atmospheric Chemistry and Physics Discussions, 20. doi:10.5194/acp-2020-365.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bacer, Sara1, Author              
Sullivan , Sylvia C., Author
Tost, Holger, Author
Lelieveld, Jos1, Author              
Pozzer, Andrea1, Author              
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: Microphysical processes in cold clouds which act as sources or sinks of hydrometeors below 0 °C control the ice crystal number concentrations (ICNCs) and in turn the cloud radiative effects. Estimating the relative importance of the cold cloud microphysical process rates is of fundamental importance to underpin the development of cloud parameterizations for weather, atmospheric chemistry and climate models and compare the output with observations at different temporal resolutions. This study quantifies and investigates the cold cloud microphysical process rates by means of the chemistry-climate model EMAC and defines the hierarchy of sources and sinks of ice crystals. The analysis is carried out both at global and at regional scales. We found that globally the freezing of cloud droplets, along with convective detrainment over tropical land masses, are the dominant sources of ice crystals, while aggregation and accretion act as the largest sinks. In general, all processes are characterised by highly skewed distribution. Moreover, the influence of (a) different ice nucleation parameterizations and (b) a future global warming scenario on the rates has been analysed in two sensitivity studies. In the first, we found that the application of different parameterizations for ice nucleation changed only slightly the hierarchy of ice crystal sources. In the second, all microphysical processes followed an upward shift (in altitude) and an increase by up to 10 % in the upper troposphere towards the end of the 21st century. This increase could have important feedbacks, such as leading to enhanced longwave warming of the uppermost atmosphere.

Details

show
hide
Language(s): eng - English
 Dates: 2020-04-27
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/acp-2020-365
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics Discussions
  Abbreviation : Atmos. Chem. Phys. Discuss.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geophysical Society, Copernicus Publ.
Pages: 24 Volume / Issue: 20 Sequence Number: - Start / End Page: - Identifier: ISSN: 1680-7367
CoNE: https://pure.mpg.de/cone/journals/resource/111076360006006