English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Frequency-Independent Terahertz Anomalous Hall Effect in DyCo5, Co32Fe68 and Gd27Fe73 Thin Films from DC to 40 THz

Seifert, T., Martens, U., Radu, F., Ribow, M., Beritta, M., Nadvornik, L., et al. (2021). Frequency-Independent Terahertz Anomalous Hall Effect in DyCo5, Co32Fe68 and Gd27Fe73 Thin Films from DC to 40 THz. Advanced Materials, 33(14): 2007398. doi:10.1002/adma.202007398.

Item is

Files

show Files
hide Files
:
2011.01676.pdf (Preprint), 674KB
Name:
2011.01676.pdf
Description:
File downloaded from arXiv at 2020-11-11 08:44
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
adma.202007398.pdf (Publisher version), 867KB
Name:
adma.202007398.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Seifert, Tom1, 2, Author           
Martens, Ulrike3, Author
Radu, Florin4, Author
Ribow, Mirkow5, Author
Beritta, Marco6, Author
Nadvornik, Lukas7, Author
Starke, Ronald8, Author
Jungwirth, Tomas9, 10, Author
Wolf, Martin1, Author           
Radu, Ilie2, 11, Author
Münzenberg, Markus3, Author
Oppeneer, Peter M.6, Author
Woltersdorf, Georg5, Author
Kampfrath, Tobias1, 2, Author           
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
2Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany, ou_persistent22              
3Institute of Physics, University of Greifswald, 17489 Greifswald, Germany, ou_persistent22              
4Helmholtz-Zentrum Berlin fϋr Materialien und Energie, Berlin, Germany, ou_persistent22              
5Institute of Physics, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale), Germany, ou_persistent22              
6Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120 Uppsala, Sweden, ou_persistent22              
7Faculty of Mathematics and Physics, Charles University, Ke Kalovu 2027/3, Prague 12116, Czech Republic, ou_persistent22              
8TU Bergakademie Freiberg, 09599 Freiberg, Germany, ou_persistent22              
9Institute of Physics, Academy of Sciences of the Czech Republic, 16253 Prague, Czech Republic, ou_persistent22              
10School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK, ou_persistent22              
11Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, 12489 Berlin, Germany, ou_persistent22              

Content

show
hide
Free keywords: Condensed Matter, Materials Science, cond-mat.mtrl-sci, Condensed Matter, Mesoscale and Nanoscale Physics, cond-mat.mes-hall
 Abstract: The anomalous Hall effect (AHE) is a fundamental spintronic charge-to-charge-current conversion phenomenon and closely related to spin-to-charge-current conversion by the spin Hall effect. Future high-speed
spintronic devices will crucially rely on such conversion effects at terahertz (THz) frequencies. Here, we reveal that the AHE remains operative from DC up to 40 THz with a flat frequency response in thin films of three technologically relevant magnetic materials: DyCo5, Co32Fe68 and Gd27Fe73. We measure the frequency-dependent conductivity-tensor elements σxx and σyx and find good agreement with DC
measurements. The experimental findings are fully consistent with ab-initio calculations of σyx for CoFe and highlight the role of the large Drude scattering rate (~100 THz) of metal thin films, which smears out any sharp spectral features of the THz AHE. Finally, we find that the intrinsic contribution to the THz AHE dominates over the extrinsic mechanisms for our samples. Our results imply that the AHE and related effects such as the spin
Hall effect are highly promising ingredients of future THz spintronic devices reliably operating from DC to 40 THz and beyond.

Details

show
hide
Language(s): eng - English
 Dates: 2020-11-032020-10-292021-03-032021-04-08
 Publication Status: Issued
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : TERAMAG - Ultrafast spin transport and magnetic order controlled by terahertz electromagnetic pulses
Grant ID : 681917
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)
Project name : ASPIN - Antiferromagntic spintronics
Grant ID : 766566
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Advanced Materials
  Other : Adv. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: 10 Volume / Issue: 33 (14) Sequence Number: 2007398 Start / End Page: - Identifier: ISSN: 0935-9648
CoNE: https://pure.mpg.de/cone/journals/resource/954925570855