Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl3Interfaces

Rizzo, D. J., Jessen, B. S., Sun, Z., Ruta, F. L., Zhang, J., Yan, J.-Q., et al. (2020). Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl3Interfaces. Nano Letters, 20(12), 8438-8445. doi:10.1021/acs.nanolett.0c03466.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
nl0c03466_si_001.pdf (Ergänzendes Material), 10MB
Name:
nl0c03466_si_001.pdf
Beschreibung:
Detailed description of CPP modeling, heterostructure assembly, Raman spectroscopy, supplementary near-field measurements and DFT calculations
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
acs.nanolett.0c03466.pdf (Verlagsversion), 6MB
Name:
acs.nanolett.0c03466.pdf
Beschreibung:
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
© American Chemical Society

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://dx.doi.org/10.1021/acs.nanolett.0c03466 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Rizzo, D. J.1, Autor
Jessen, B. S.2, Autor
Sun, Z.1, Autor
Ruta, F. L.3, Autor
Zhang, J.4, 5, Autor           
Yan, J.-Q.6, Autor
Xian, L. D.4, 5, Autor           
McLeod, A. S.1, Autor
Berkowitz, M. E.1, Autor
Watanabe, K.7, Autor
Taniguchi, T.8, Autor
Nagler, S. E.9, Autor
Mandrus, D. G.6, Autor
Rubio, A.4, 5, 10, 11, Autor           
Fogler, M. M.12, Autor
Millis, A. J.1, 10, Autor
Hone, J. C.13, Autor
Dean, C. R.1, Autor
Basov, D. N.1, Autor
Affiliations:
1Department of Physics, Columbia University, New York, ou_persistent22              
2Department of Physics and Department of Mechanical Engineering, Columbia University, New York, ou_persistent22              
3Department of Physics and Department of Applied Physics and Applied Mathematics, ColumbiaUniversity, New York, ou_persistent22              
4Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
5Center for Free-Electron Laser Science, ou_persistent22              
6Materials Science and Technology Division, Oak Ridge National Laboratory, ou_persistent22              
7Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, ou_persistent22              
8International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, ou_persistent22              
9Neutron Scattering Division, Oak RidgeNational Laboratory, ou_persistent22              
10Center for Computational Quantum Physics, Flatiron Institute, ou_persistent22              
11Nano-Bio Spectroscopy Group, Universidad del País Vasco UPV/EHU, ou_persistent22              
12Department of Physics, University of California San Diego, ou_persistent22              
13Department of Mechanical Engineering, Columbia University, New York, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: plasmon polaritons α-RuCl3 graphene scanning near-field optical microscopy (SNOM) two-dimensional (2D) materials Mott insulators
 Zusammenfassung: Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl3, we are able to visualize and quantify massive charge transfer at graphene/α-RuCl3 interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl3 at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: EF= 0.6 eV (n = 2.7 × 1013 cm-2). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl3 giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-11-022020-08-262020-11-092020-12-09
 Publikationsstatus: Erschienen
 Seiten: 8
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.nanolett.0c03466
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 886291
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Nano Letters
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 20 (12) Artikelnummer: - Start- / Endseite: 8438 - 8445 Identifikator: ISSN: 1530-6984
ISSN: 1530-6992