Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations

Clemen, H.-C., Schneider, J., Klimach, T., Helleis, F., Köllner, F., Hünig, A., et al. (2020). Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations. Atmospheric Measurement Techniques Discussions, 13. doi:10.5194/amt-2020-181.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Clemen, Hans-Christian1, Autor           
Schneider, Johannes1, Autor           
Klimach, Thomas2, Autor           
Helleis, Frank3, Autor           
Köllner, Franziska1, Autor           
Hünig, Andreas1, Autor           
Rubach, Florian1, Autor           
Mertes, Stephan, Autor
Wex, Heike, Autor
Stratmann, Frank, Autor
Welti, André, Autor
Kohl, Rebecca, Autor
Frank, Fabian, Autor
Borrmann, Stephan1, Autor           
Affiliations:
1Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826291              
2Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826291              
3Max Planck Institute for Chemistry, Max Planck Society, ou_1826284              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The aim of this study is to show how a newly developed aerodynamic lens system (ALS), a delayed ion extraction (DIE), and better electric shielding improve the efficiency of the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA). These improvements are applicable to single-particle laser ablation mass spectrometers in general. To characterize the modifications, extensive size-resolved measurements with spherical polystyrene latex particles (PSL; 150–6000 nm) and cubic sodium chloride particles (NaCl; 400–1700 nm) were performed. Measurements at a fixed ALS position show an improved detectable particle size range of the new ALS compared to the previously used Liu-type ALS, especially for supermicron particles. At a lens pressure of 2.4 hPa, the new ALS achieves a PSL particle size range from 230 to 3240 nm with 50 % detection efficiency and between 350 and 2000 nm with 95 % detection efficiency. The particle beam divergence was determined by measuring the detection efficiency at variable ALS positions along the laser cross sections and found to be minimal for PSL at about 800 nm. Compared to measurements by single-particle mass spectrometry (SPMS) instruments using Liu-type ALSs, the minimum particle beam divergence is shifted towards larger particle sizes. However, there are no disadvantages compared to the Liu-type lenses for particle sizes down to 200 nm. Improvements achieved by using the DIE and an additional electric shielding could be evaluated by size-resolved measurements of the hit rate, which is the ratio of laser pulses yielding a detectable amount of ions to the total number of emitted laser pulses. In particular, the hit rate for multiply charged particles smaller than 500 nm is significantly improved by preventing an undesired deflection of these particles in the ion extraction field. Moreover, it was found that by using the DIE the ion yield of the ablation, ionization, and ion extraction process could be increased, resulting in up to 7 times higher signal intensities of the cation spectra. The enhanced ion yield results in a larger effective width of the ablation laser beam, which in turn leads to a hit rate of almost 100 % for PSL particles in the size range from 350 to 2000 nm. Regarding cubic NaCl particles the modifications of the ALABAMA result in an up to 2 times increased detection efficiency and an up to 5 times increased hit rate. The need for such instrument modifications arises in particular for measurements of particles that are present in low number concentrations such as ice-nucleating particles (INPs) in general, but also aerosol particles at high altitudes or in pristine environments. Especially for these low particle number concentrations, improved efficiencies help to overcome the statistical limitations of single-particle mass spectrometer measurements. As an example, laboratory INP measurements carried out in this study show that the application of the DIE alone increases the number of INP mass spectra per time unit by a factor of 2 to 3 for the sampled substances. Overall, the combination of instrument modifications presented here resulted in an increased measurement efficiency of the ALABAMA for different particle types and particles shape as well as for highly charged particles.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-06-23
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.5194/amt-2020-181
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Atmospheric Measurement Techniques Discussions
  Andere : Atmos. Meas. Tech. Discuss.
  Kurztitel : AMTD
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau : Copernicus
Seiten: 48 Band / Heft: 13 Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 1867-8610
CoNE: https://pure.mpg.de/cone/journals/resource/1867-8610