English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Training deep neural density estimators to identify mechanistic models of neural dynamics

Gonçalves, P. J., Lueckmann, J.-M., Deistler, M., Nonnenmacher, M., Öcal, K., Bassetto, G., et al. (2020). Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife, 9(1): e56261. doi:10.7554/eLife.56261.

Item is

Files

show Files
hide Files
:
elife-56261-v3.pdf (Publisher version), 17MB
Name:
elife-56261-v3.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
elife-56261-v2.pdf (Preprint), 18MB
Name:
elife-56261-v2.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://elifesciences.org/articles/56261 (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Gonçalves, Pedro J.1, 2, Author                 
Lueckmann, J-M1, 2, Author           
Deistler, Michael2, Author
Nonnenmacher, Marcel1, 2, Author           
Öcal, Kaan2, Author
Bassetto, Giacomo1, 2, Author           
Chintaluri, Chaitanya2, Author
Podlaski, William F2, Author
Haddad, Sara A2, Author
Vogels, Tim P2, Author
Greenberg, David S2, Author
Macke, Jakob H1, 2, Author           
Huguenard, John R2, Contributor
O'Leary, Timothy2, Contributor
Goldman, Mark S2, Contributor
Affiliations:
1Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society, ou_2173683              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: bayesian inference, deep learning, stomatogastric ganglion, model identification, neural dynamics, mechanistic models
 Abstract: Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators—trained using model simulations—to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin–Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.

Details

show
hide
Language(s): eng - English
 Dates: 2020-09-17
 Publication Status: Published online
 Pages: 45
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.7554/eLife.56261
PMID: 32940606
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: eLife
  Abbreviation : Elife
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge : eLife Sciences Publications
Pages: - Volume / Issue: 9 (1) Sequence Number: e56261 Start / End Page: - Identifier: ISSN: 2050-084X
CoNE: https://pure.mpg.de/cone/journals/resource/2050-084X