Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Quantitative sampling of atomic-scale electromagnetic waveforms

Peller, D., Roelcke, C., Kastner, L. Z., Buchner, T., Neef, A., Hayes, J., et al. (2020). Quantitative sampling of atomic-scale electromagnetic waveforms. Nature Photonics, xx(xx), xx-xx. doi:10.1038/s41566-020-00720-8.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
s41566-020-00720-8.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
s41566-020-00720-8.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
suppl.zip (Ergänzendes Material), 4MB
Name:
suppl.zip
Beschreibung:
Supplementary Information (pdf): Supplementary Note 1 and Figs. 1 and 2. | Supplementary Video 1 (mp4): Simulated temporal evolution of the Hartree potential comparing the set-up with molecule in the junction and the free junction. Video showing the vertical cross-section of the Hartree potential, similar to Fig. 4a,b, as it evolves over time when driven by an external waveform. Locally, the calculated Hartree potential without the molecule (left panel) and including the molecule in the junction (right panel) vary strongly. Every frame corresponds to a time step of 215 as. The colour scale indicates the Hartree potential in electronvolts. | Supplementary Video 2 (mp4): Simulated temporal evolution of the Hartree potential comparing two different tip orientations. Video showing the vertical cross-section of the Hartree potential as in Supplementary Video 1 (same time step per frame). Comparing a tilted tip configuration (left panel) with a symmetric geometry (right panel), we obtain very similar spatial distributions of the potential in the vicinity of the molecule, causing similar near-field profiles. Hence the near-field is not strongly dependent on the tip symmetry or orientation. The colour scale indicates the Hartree potential in electronvolts.
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/zip / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://dx.doi.org/10.1038/s41566-020-00720-8 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Peller, D.1, Autor
Roelcke, C.1, Autor
Kastner, L. Z.1, Autor
Buchner, T.1, Autor
Neef, A.1, Autor
Hayes, J.1, Autor
Bonafé, F.2, Autor           
Sidler, D.2, Autor           
Ruggenthaler, M.2, Autor           
Rubio, A.2, 3, 4, Autor           
Huber, R.1, Autor
Repp, J.1, Autor
Affiliations:
1Department of Physics, University of Regensburg, ou_persistent22              
2Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
3Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, ou_persistent22              
4Universidad del País Vasco, UPV/EHU, San Sebastián, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Tailored nanostructures can confine electromagnetic waveforms in extremely sub-wavelength volumes, opening new avenues in lightwave sensing and control down to sub-molecular resolution. Atomic light–matter interaction depends critically on the absolute strength and the precise time evolution of the near field, which may be strongly influenced by quantum-mechanical effects. However, measuring atom-scale field transients has remained out of reach. Here we introduce quantitative atomic-scale waveform sampling in lightwave scanning tunnelling microscopy to resolve a tip-confined near-field transient. Our parameter-free calibration employs a single-molecule switch as an atomic-scale voltage standard. Although salient features of the far-to-near-field transfer follow classical electrodynamics, we develop a comprehensive understanding of the atomic-scale waveforms with time-dependent density functional theory. The simulations validate our calibration and confirm that single-electron tunnelling ensures minimal back-action of the measurement process on the electromagnetic fields. Our observations access an uncharted domain of nano-opto-electronics where local quantum dynamics determine femtosecond atomic near fields.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-04-012020-10-152020-11-162020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41566-020-00720-8
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 895747
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Nature Photonics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London [u.a.] : Nature Publ. Group
Seiten: - Band / Heft: xx (xx) Artikelnummer: - Start- / Endseite: xx - xx Identifikator: Anderer: 1749-4885
Anderer: 1749-4893
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000240270