English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Atomic relaxation around defects in magnetically disordered materials computed by atomic spin constraints within an efficient Lagrange formalism

Hegde, O., Grabowski, M., Zhang, X., Waseda, O., Hickel, T., Freysoldt, C., et al. (2020). Atomic relaxation around defects in magnetically disordered materials computed by atomic spin constraints within an efficient Lagrange formalism. Physical Review B, 102(14): 144101. doi:10.1103/PhysRevB.102.144101.

Item is

Files

show Files
hide Files
:
Phys. Rev. B 102, 144101 (2020).pdf (Publisher version), 921KB
Name:
Phys. Rev. B 102, 144101 (2020).pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Hegde, Omkar1, Author           
Grabowski, Maximilian2, 3, Author           
Zhang, Xie4, Author           
Waseda, Osamu1, Author           
Hickel, Tilmann1, Author           
Freysoldt, Christoph2, Author           
Neugebauer, Jörg5, Author           
Affiliations:
1Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
2Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863342              
3Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universit Ìat Bochum, 44801 Bochum, Germany, ou_persistent22              
4Materials Department, University of California, Santa Barbara, CA 93106-5050, USA, ou_persistent22              
5Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

Content

show
hide
Free keywords: Degrees of freedom (mechanics); Density functional theory; Lagrange multipliers; Magnetic materials; Magnetism, Configurational spaces; Disordered materials; Lagrange formalism; Migration barriers; Paramagnetic bcc iron; Projector augmented waves; Relaxation schemes; Vacancy formation energies, Atoms
 Abstract: Lattice and magnetic degrees of freedom are strongly coupled in magnetic materials. We propose a consistent first-principles framework to explore the joint configurational space. For this, we define atomic spin moments from the projector augmented-wave formalism of density-functional theory and control them via Lagrangian constraints. We demonstrate our approach for vacancy formation and migration in collinear paramagnetic bcc iron by implementing a relaxation scheme based on spin-space averaged forces (SSA relaxation). Based on these results we discuss the impact of the magnetic state on vacancy formation energies, migration barriers, and relaxations. © 2020 authors. Published by the American Physical Society.

Details

show
hide
Language(s): eng - English
 Dates: 2020-10-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevB.102.144101
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : O.H. is grateful to IMPRS-SurMat for funding. O.H. and T.H. acknowledge financial support by the German Research Foundation within the DFG-ANR project MAGIKID (HI1300/13-1). O.H. and T.H. also acknowledge Dr. C. C. Fu for helpful discussions.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, NY : American Physical Society
Pages: 11 Volume / Issue: 102 (14) Sequence Number: 144101 Start / End Page: - Identifier: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008