hide
Free keywords:
Buffer layers; Density functional theory; High resolution transmission electron microscopy; III-V semiconductors; Indium; Indium metallography; Lattice mismatch; Molecular beam epitaxy; Semiconductor alloys, DFT calculation; Effect of strain; Growth conditions; In compositions; In-plane lattices; MBE growth; Strained layers, Gallium nitride
Abstract:
The incorporation of indium in GaN (0001) surfaces in dependence of strain is investigated by combining molecular-beam epitaxy (MBE) growth, quantitative transmission electron microscopy, and density-functional theory (DFT) calculations. Growth experiments were conducted on GaN, as well as on 30±2 partially relaxed In0.19Ga0.81N buffer layers, serving as substrates. Despite the only 0.6 larger in-plane lattice constant of GaN provided by the buffer layer, our experiments reveal that the In incorporation increases by more than a factor of two for growth on the In0.19Ga0.81N buffer, as compared to growth on GaN. DFT calculations reveal that the decreasing chemical potential due to the reduced lattice mismatch stabilizes the In-N bond at the surface. Depending on the growth conditions (metal rich or N rich), this promotes the incorporation of higher In contents into a coherently strained layer. Nevertheless, the effect of strain is highly nonlinear. As a consequence of the different surface reconstructions, growth on relaxed InxGa1-xN buffers appears more suitable for metal-rich MBE growth conditions with regard to achieving higher In compositions. © 2020 American Physical Society.