English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Putative quantum critical point in the itinerant magnet ZrFe4Si2 with a frustrated quasi-one-dimensional structure

Ajeesh, M. O., Weber, K., Geibel, C., & Nicklas, M. (2020). Putative quantum critical point in the itinerant magnet ZrFe4Si2 with a frustrated quasi-one-dimensional structure. Physical Review B, 102(18): 184403, pp. 1-8. doi:10.1103/PhysRevB.102.184403.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ajeesh, M. O.1, Author           
Weber, K.1, Author           
Geibel, C.2, Author           
Nicklas, M.3, Author           
Affiliations:
1Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863462              
2Christoph Geibel, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863465              
3Michael Nicklas, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863472              

Content

show
hide
Free keywords: -
 Abstract: The Fe sublattice in the compound ZrFe4Si2 features geometrical frustration and quasi-one-dimensionality. We therefore investigated the magnetic behavior in ZrFe4Si2 and its evolution upon substituting Ge for Si and under the application of hydrostatic pressure using structural, magnetic, thermodynamic, and electrical-transport probes. Magnetic measurements reveal that ZrFe4Si2 holds paramagnetic Fe moments with an effective moment mu(eff) = 2.18 mu(B). At low temperatures the compound shows a weak short-range magnetic order below 6 K. Our studies demonstrate that substituting Ge for Si increases the unit-cell volume and stabilizes the short-range order into a long-range spin-density wave type magnetic order. On the other hand, hydrostatic pressure studies using electrical-resistivity measurements on ZrFe4(Si0.88Ge0.12)(2) indicate a continuous suppression of the magnetic ordering upon increasing pressure. Therefore, our combined chemical substitution and hydrostatic pressure studies suggest the existence of a lattice-volume-controlled quantum critical point in ZrFe4Si2.

Details

show
hide
Language(s): eng - English
 Dates: 2020-11-052020-11-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1103/PhysRevB.102.184403
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, NY : American Physical Society
Pages: - Volume / Issue: 102 (18) Sequence Number: 184403 Start / End Page: 1 - 8 Identifier: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008