English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory

Saitow, M., & Neese, F. (2018). Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. The Journal of Chemical Physics, 149(3): 034104. doi:10.1063/1.5027114.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Saitow, Masaaki1, Author           
Neese, Frank1, Author           
Affiliations:
1Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              

Content

show
hide
Free keywords: -
 Abstract: Exploiting locality in the electron correlation reduces the computational cost for solving the Coupled-Cluster (CC) equations. This is important for making CC theory applicable to routine computational chemistry applications where it promises to deliver results of “gold-standard” quality. Recently, we have proposed a series of CC formulations in the domain-based local pair-natural orbital framework [DLPNO-coupled-cluster with singles and doubles (CCSD) and DLPNO-coupled-cluster singles and doubles with perturbative triples] which are designed to reproduce approximately 99.9% of the canonical correlation energy. In our previous work, the DLPNO-CCSD method has been extended to the high-spin open-shell reference and shown to possess comparable accuracy to the closed-shell counterpart [M. Saitow et al., J. Chem. Phys. 146, 164105 (2017)]. The so-called Λ-equations have been formulated in the DLPNO framework for the closed-shell species as an exact derivative of the DLPNO-CCSD Lagrangian with respect to the PNO-based cluster amplitudes [D. Datta et al., J. Chem. Phys. 145, 114101 (2016)]. In this paper, we extend the DLPNO-based Lagrangian scheme to the high-spin open-shell reference cases, thus enabling the accurate computation of the electron- and spin-densities for large open-shell species. We apply this newly developed approach to various first-order electronic and magnetic properties such as isotropic and anisotropic components in the hyperfine coupling interactions and the electric field gradient. We demonstrate that the DLPNO-CCSD results converge toward the respective canonical CC density and also that the DLPNO-CCSD-based properties are more accurate than the conventional density functional theory (DFT) results in real-life applications. The additional computational cost is not more than one energy evaluation in the DLPNO-CCSD framework.

Details

show
hide
Language(s): eng - English
 Dates: 2018-02-272018-07-192018-07-21
 Publication Status: Issued
 Pages: 15
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1063/1.5027114
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Chemical Physics
  Abbreviation : J. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Institute of Physics
Pages: - Volume / Issue: 149 (3) Sequence Number: 034104 Start / End Page: - Identifier: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226