English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Fully Automated Quantum‐Chemistry‐Based Computation of Spin–Spin‐Coupled Nuclear Magnetic Resonance Spectra

Grimme, S., Bannwarth, C., Dohm, S., Hansen, A., Pisarek, J., Pracht, P., et al. (2017). Fully Automated Quantum‐Chemistry‐Based Computation of Spin–Spin‐Coupled Nuclear Magnetic Resonance Spectra. Angewandte Chemie International Edition, 56(46), 14763-14769. doi:10.1002/anie.201708266.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Grimme, Stefan1, Author
Bannwarth, Christoph1, Author
Dohm, Sebastian1, Author
Hansen, Andreas1, Author
Pisarek, Jana1, Author
Pracht, Philipp1, Author
Seibert, Jakob1, Author
Neese, Frank2, Author           
Affiliations:
1Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany, ou_persistent22              
2Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              

Content

show
hide
Free keywords: conformational analysis; density functional calculations; NMR spectroscopy; quantum chemistry; tight-binding method
 Abstract: We present a composite procedure for the quantum‐chemical computation of spin–spin‐coupled 1H NMR spectra for general, flexible molecules in solution that is based on four main steps, namely conformer/rotamer ensemble (CRE) generation by the fast tight‐binding method GFN‐xTB and a newly developed search algorithm, computation of the relative free energies and NMR parameters, and solving the spin Hamiltonian. In this way the NMR‐specific nuclear permutation problem is solved, and the correct spin symmetries are obtained. Energies, shielding constants, and spin–spin couplings are computed at state‐of‐the‐art DFT levels with continuum solvation. A few (in)organic and transition‐metal complexes are presented, and very good, unprecedented agreement between the theoretical and experimental spectra was achieved. The approach is routinely applicable to systems with up to 100–150 atoms and may open new avenues for the detailed (conformational) structure elucidation of, for example, natural products or drug molecules

Details

show
hide
Language(s): eng - English
 Dates: 2017-09-142017-11-13
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/anie.201708266
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Angewandte Chemie International Edition
  Abbreviation : Angew. Chem., Int. Ed.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 56 (46) Sequence Number: - Start / End Page: 14763 - 14769 Identifier: ISSN: 1433-7851
CoNE: https://pure.mpg.de/cone/journals/resource/1433-7851