English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices

Imig, C., López-Murcia, F. J., Maus, L., García-Plaza, I. H., Mortensen, L.-S., Schwark, M., et al. (2020). Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices. Neuron, 108(5), 843-860.e8. doi:10.1016/j.neuron.2020.09.004.

Item is

Files

show Files
hide Files
:
1-s2.0-S0896627320307042-main.pdf (Publisher version), 9MB
Name:
1-s2.0-S0896627320307042-main.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Imig, Cordelia1, Author                 
López-Murcia, Francisco Jose1, Author           
Maus, Lydia1, Author
García-Plaza, Inés Hojas1, Author
Mortensen, Lena-Sünke1, Author           
Schwark, Manuela1, Author           
Schwarze, Valentin1, Author
Angibaud, Julie, Author
Nägerl, U. Valentin, Author
Taschenberger, Holger1, Author                 
Brose, Nils1, Author           
Cooper, Benjamin H.1, Author           
Affiliations:
1Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society, ou_2173659              

Content

show
hide
Free keywords: -
 Abstract: Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation (“flash-and-freeze”) and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and “flash-and-freeze” electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.

Details

show
hide
Language(s): eng - English
 Dates: 2020-09-282020
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.neuron.2020.09.004
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Neuron
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, Mass. : Cell Press
Pages: - Volume / Issue: 108 (5) Sequence Number: - Start / End Page: 843 - 860.e8 Identifier: ISSN: 0896-6273
CoNE: https://pure.mpg.de/cone/journals/resource/954925560565