Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A Gap-ETH-Tight Approximation Scheme for Euclidean TSP

Kisfaludi-Bak, S., Nederlof, J., & Węgrzycki, K. (2020). A Gap-ETH-Tight Approximation Scheme for Euclidean TSP. Retrieved from https://arxiv.org/abs/2011.03778.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier
Latex : A Gap-{ETH}-Tight Approximation Scheme for Euclidean {TSP}

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:2011.03778.pdf (Preprint), 2MB
Name:
arXiv:2011.03778.pdf
Beschreibung:
File downloaded from arXiv at 2020-11-26 13:30
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kisfaludi-Bak, Sándor1, Autor           
Nederlof, Jesper2, Autor
Węgrzycki, Karol1, Autor                 
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Computational Geometry, cs.CG,Computer Science, Computational Complexity, cs.CC,Computer Science, Data Structures and Algorithms, cs.DS
 Zusammenfassung: We revisit the classic task of finding the shortest tour of $n$ points in
$d$-dimensional Euclidean space, for any fixed constant $d \geq 2$. We
determine the optimal dependence on $\varepsilon$ in the running time of an
algorithm that computes a $(1+\varepsilon)$-approximate tour, under a plausible
assumption. Specifically, we give an algorithm that runs in
$2^{\mathcal{O}(1/\varepsilon^{d-1})} n\log n$ time. This improves the
previously smallest dependence on $\varepsilon$ in the running time
$(1/\varepsilon)^{\mathcal{O}(1/\varepsilon^{d-1})}n \log n$ of the algorithm
by Rao and Smith (STOC 1998). We also show that a
$2^{o(1/\varepsilon^{d-1})}\text{poly}(n)$ algorithm would violate the
Gap-Exponential Time Hypothesis (Gap-ETH).
Our new algorithm builds upon the celebrated quadtree-based methods initially
proposed by Arora (J. ACM 1998), but it adds a simple new idea that we call
\emph{sparsity-sensitive patching}. On a high level this lets the granularity
with which we simplify the tour depend on how sparse it is locally. Our
approach is (arguably) simpler than the one by Rao and Smith since it can work
without geometric spanners. We demonstrate the technique extends easily to
other problems, by showing as an example that it also yields a Gap-ETH-tight
approximation scheme for Rectilinear Steiner Tree.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-11-072020
 Publikationsstatus: Online veröffentlicht
 Seiten: 38 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2011.03778
BibTex Citekey: Kisfaludi-BakNW20
URI: https://arxiv.org/abs/2011.03778
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: