日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Multilevel Approaches within the Local Pair Natural Orbital Framework

Sparta, M., Retegan, M., Pinski, P., Riplinger, C., Becker, U., & Neese, F. (2017). Multilevel Approaches within the Local Pair Natural Orbital Framework. Journal of Chemical Theory and Computation, 13(7), 3198-3207. doi:10.1021/acs.jctc.7b00260.

Item is

基本情報

非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0007-7910-F 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0007-7911-E
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

非表示:
 作成者:
Sparta, Manuel1, 著者           
Retegan, Marius1, 著者           
Pinski, Peter1, 著者           
Riplinger, Christoph1, 著者           
Becker, Ute1, 著者           
Neese, Frank1, 著者           
所属:
1Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              

内容説明

非表示:
キーワード: -
 要旨: The linear-scaling local coupled cluster method DLPNO-CCSD(T) allows calculations on systems containing hundreds of atoms to be performed while reproducing canonical CCSD(T) energies typically with chemical accuracy (<1 kcal/mol). The accuracy of the method is determined by two main truncation thresholds that control the number of electron pairs included in the CCSD iterations and the size of the pair natural orbital virtual space for each electron pair, respectively. While the results of DLPNO-CCSD(T) calculations converge smoothly toward their canonical counterparts as the thresholds are tightened, the improved accuracy is accompanied by a fairly steep increase of the computational cost. Many applications study events that are confined to a relatively small region of the system of interest. Hence, it is viable to develop methods that allow the user to treat different parts of a large system at various levels of accuracy. In this work we present an extension to the native DLPNO method that fragments the system into preselected molecular parts and uses different thresholds or even different levels of theory for the interaction between individual fragments. Thereby chemical intuition can be used to focus computational resources on a more accurate evaluation of the properties at the center of interest, while permitting a less demanding description of the surrounding moieties. The strategy was implemented within the DLPNO-CCSD(T) framework. We tested the scheme for a series of realistic quantum chemical applications such as the calculation of the dimerization energies, potential energy surfaces, enantiomeric excess in organometallic catalysis, and the binding energy of the anticancer drug ellipticine to DNA. This work demonstrates the power of the approach and offers guidance to its setup.

資料詳細

非表示:
言語: eng - English
 日付: 2017-03-132017-06-072017-07-11
 出版の状態: 出版
 ページ: 10
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1021/acs.jctc.7b00260
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

非表示:
出版物名: Journal of Chemical Theory and Computation
  省略形 : J. Chem. Theory Comput.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Washington, D.C. : American Chemical Society
ページ: - 巻号: 13 (7) 通巻号: - 開始・終了ページ: 3198 - 3207 識別子(ISBN, ISSN, DOIなど): ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832