日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory

Saitow, M., Becker, U., Riplinger, C., Valeev, E. F., & Neese, F. (2017). A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. The Journal of Chemical Physics, 146(16):. doi:10.1063/1.4981521.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0007-790B-6 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0007-790C-5
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Saitow, Masaaki1, 著者           
Becker, Ute1, 著者           
Riplinger, Christoph1, 著者           
Valeev, Edward F.2, 著者
Neese, Frank1, 著者           
所属:
1Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              
2Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N6) with system size N, has limited its practical application to small systems consisting of not more than approximately 20–30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2016-12-192017-04-272017-04-28
 出版の状態: 出版
 ページ: 31
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1063/1.4981521
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: The Journal of Chemical Physics
  省略形 : J. Chem. Phys.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Woodbury, N.Y. : American Institute of Physics
ページ: - 巻号: 146 (16) 通巻号: 164105 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226