English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Electronic Structures of the [Fe(N2)(SiPiPr3)]+1/0/–1 Electron Transfer Series: A Counterintuitive Correlation between Isomer Shifts and Oxidation States

Ye, S., Bill, E., & Neese, F. (2016). Electronic Structures of the [Fe(N2)(SiPiPr3)]+1/0/–1 Electron Transfer Series: A Counterintuitive Correlation between Isomer Shifts and Oxidation States. Inorganic Chemistry, 55(7), 3468-3474. doi:10.1021/acs.inorgchem.5b02908.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ye, Shengfa1, Author           
Bill, Eckhard1, Author           
Neese, Frank1, Author           
Affiliations:
1Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              

Content

show
hide
Free keywords: -
 Abstract: The electronic structure analysis of the low-spin iron(II/I/0) complexes [Fe(N2)(SiPiPr3)]+/0/– (SiPiPr3 = [Si(o-C6H4PiPr2)3]) recently published by J. Peters et al. (Nature Chem.2010, 2, 558–565) reveals that the redox processes stringing this electron transfer series are best viewed as metal-centered reductions, i.e. FeIIN20 → FeIN20 → Fe0N20. Superficially, the interpretation seems to be incompatible with the Mössbauer measurement, because the observed isomer shifts are more negative for the lower oxidation states, whereas typically iron-based reduction tends to increase the isomer shift. To rationalize the experimental findings, we analyzed the contributions from the 1s to 4s orbitals to the charge density at the Mössbauer nucleus and found that the positive correlation between the isomer shift and the oxidation state results from an unusual shrinking of the Fe–N2 bond upon reduction due to enhanced N2 to Fe π-backbonding. The other effects of reduction arising from shielding of the nuclear potential, decreasing covalency, and changes in the 4s population would induce the usual negative correlation. The structure distortion dictates the radial distribution of the 4s orbital and the charge density at the nucleus such that a virtually linear relationship between the isomer shift and the Fe–N2 distance could be identified for this series.

Details

show
hide
Language(s): eng - English
 Dates: 2015-12-162016-03-112016-04-04
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.inorgchem.5b02908
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Inorganic Chemistry
  Abbreviation : Inorg. Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 55 (7) Sequence Number: - Start / End Page: 3468 - 3474 Identifier: ISSN: 0020-1669
CoNE: https://pure.mpg.de/cone/journals/resource/0020-1669