English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Tight small Seifert fibered manifolds with e0=-2

Tosun, B. (2020). Tight small Seifert fibered manifolds with e0=-2. Algebraic & Geometric Topology, 20(1), 1-27. doi:10.2140/agt.2020.20.1.

Item is

Basic

show hide
Genre: Journal Article
Latex : Tight small Seifert fibered manifolds with $e_0=-2$

Files

show Files
hide Files
:
Tosun_Tight small Seifert fibered manifolds_2020.pdf (Publisher version), 443KB
Name:
Tosun_Tight small Seifert fibered manifolds_2020.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
1510.06948.pdf (Preprint), 443KB
Name:
1510.06948.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
https://doi.org/10.2140/agt.2020.20.1 (Publisher version)
Description:
-

Creators

show
hide
 Creators:
Tosun, Bülent1, Author              
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Geometric Topology, Symplectic Geometry
 Abstract: In this paper we provide the classification of tight contact structures on some small Seifert fibered manifolds. As an application of this classification, combined with work of Lekili in \cite{L2010}, we obtain infinitely many counterexamples to a question of Honda-Kazez-Mati\'{c} that asks whether a right-veering, non-destabilizable open book necessarily supports a tight contact structure.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Published in print
 Pages: Corrected main result, and typos. A new section is added
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Algebraic & Geometric Topology
  Abbreviation : Algebr. Geom. Topol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Mathematical Sciences Publishers
Pages: - Volume / Issue: 20 (1) Sequence Number: - Start / End Page: 1 - 27 Identifier: -