Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Analyzing the Dependency of ConvNets on Spatial Information

Fan, Y., Xian, Y., Losch, M. M., & Schiele, B. (2020). Analyzing the Dependency of ConvNets on Spatial Information. Retrieved from https://arxiv.org/abs/2002.01827.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier
Alternativer Titel : Analyzing the Dependency of {ConvNets} on Spatial Information

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:2002.01827.pdf (Preprint), 3MB
Name:
arXiv:2002.01827.pdf
Beschreibung:
File downloaded from arXiv at 2020-12-03 07:15
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Fan, Yue1, Autor           
Xian, Yongqin1, Autor           
Losch, Max Maria1, Autor           
Schiele, Bernt1, Autor                 
Affiliations:
1Computer Vision and Machine Learning, MPI for Informatics, Max Planck Society, ou_1116547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Computer Vision and Pattern Recognition, cs.CV
 Zusammenfassung: Intuitively, image classification should profit from using spatial
information. Recent work, however, suggests that this might be overrated in
standard CNNs. In this paper, we are pushing the envelope and aim to further
investigate the reliance on spatial information. We propose spatial shuffling
and GAP+FC to destroy spatial information during both training and testing
phases. Interestingly, we observe that spatial information can be deleted from
later layers with small performance drops, which indicates spatial information
at later layers is not necessary for good performance. For example, test
accuracy of VGG-16 only drops by 0.03% and 2.66% with spatial information
completely removed from the last 30% and 53% layers on CIFAR100, respectively.
Evaluation on several object recognition datasets (CIFAR100, Small-ImageNet,
ImageNet) with a wide range of CNN architectures (VGG16, ResNet50, ResNet152)
shows an overall consistent pattern.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-02-052020
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2002.01827
BibTex Citekey: Fan_arXiv2002.01827
URI: https://arxiv.org/abs/2002.01827
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: