English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex

Wardle, S., Ritchie, J., Seymour, K., & Carlson, T. (2017). Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex. The Journal of Neuroscience, 37(5), 1187-1196. doi:10.1523/JNEUROSCI.2690-16.2016.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Wardle, SG, Author
Ritchie, JB, Author
Seymour, K1, Author           
Carlson, TA, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether “edge-related activity” underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding.

Details

show
hide
Language(s):
 Dates: 2017-02
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1523/JNEUROSCI.2690-16.2016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Neuroscience
  Other : The Journal of Neuroscience: the Official Journal of the Society for Neuroscience
  Abbreviation : J. Neurosci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : Society of Neuroscience
Pages: - Volume / Issue: 37 (5) Sequence Number: - Start / End Page: 1187 - 1196 Identifier: ISSN: 0270-6474
CoNE: https://pure.mpg.de/cone/journals/resource/954925502187_1