English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Polynomial products modulo primes and applications

Klurman, O., & Munsch, M. (2020). Polynomial products modulo primes and applications. Monatshefte für Mathematik, 191(3), 577-593. doi:10.1007/s00605-019-01359-6.

Item is

Files

show Files
hide Files
:
arXiv:1810.06310.pdf (Preprint), 233KB
Name:
arXiv:1810.06310.pdf
Description:
File downloaded from arXiv at 2020-12-04 11:50
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Klurman-Munsch_Polynomial products modulo primes and applications_2020.pdf (Publisher version), 339KB
 
File Permalink:
-
Name:
Klurman-Munsch_Polynomial products modulo primes and applications_2020.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1007/s00605-019-01359-6 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Klurman, Oleksiy1, Author           
Munsch, Marc, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Number Theory
 Abstract: For any polynomial $P(x)\in\mathbb{Z}[x],$ we study arithmetic dynamical
systems generated by $\displaystyle{F_P(n)=\prod_{k\le n}}P(n)(\text{mod}\ p),$
$n\ge 1.$ We apply this to improve the lower bound on the number of distinct
quadratic fields of the form $\mathbb{Q}(\sqrt{F_P(n)})$ in short intervals
$M\le n\le M+H$ previously due to Cilleruelo, Luca, Quir\'{o}s and Shparlinski.
As a second application, we estimate the average number of missing values of
$F_P(n)(\text{mod}\ p)$ for special families of polynomials, generalizing
previous work of Banks, Garaev, Luca, Schinzel, Shparlinski and others.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Issued
 Pages: 17
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1810.06310
DOI: 10.1007/s00605-019-01359-6
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monatshefte für Mathematik
  Abbreviation : Monatsh. Math.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer
Pages: - Volume / Issue: 191 (3) Sequence Number: - Start / End Page: 577 - 593 Identifier: -