Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Six-Electron Reduction of Nitrite to Ammonia by Cytochrome c Nitrite Reductase: Insights from Density Functional Theory Studies

Bykov, D., & Neese, F. (2015). Six-Electron Reduction of Nitrite to Ammonia by Cytochrome c Nitrite Reductase: Insights from Density Functional Theory Studies. Inorganic Chemistry, 54(19), 9303-9316. doi:10.1021/acs.inorgchem.5b01506.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bykov, Dmytro1, Autor
Neese, Frank2, Autor           
Affiliations:
1qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10A, DK-8000 Aarhus C, Denmark, ou_persistent22              
2Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In this Forum Article, an extensive discussion of the mechanism of six-electron, seven-proton nitrite reduction by the cytochrome c nitrite reductase enzyme is presented. On the basis of previous studies, the entire mechanism is summarized and a unified picture of the most plausible sequence of elementary steps is presented. According to this scheme, the mechanism can be divided into five functional stages. The first phase of the reaction consists of substrate binding and N–O bond cleavage. Here His277 plays a crucial role as a proton donor. In this step, the N–O bond is cleaved heterolytically through double protonation of the substrate. The second phase of the mechanism consists of two proton-coupled electron-transfer events, leading to an HNO intermediate. The third phase involves the formation of hydroxylamine, where Arg114 provides the necessary proton for the reaction. The second N–O bond is cleaved in the fourth phase of the mechanism, again triggered by proton transfer from His277. The Tyr218 side chain governs the fifth and last phase of the mechanism. It consists of radical transfer and ammonia formation. Thus, this mechanism implies that all conserved active-site side chains work in a concerted way in order to achieve this complex chemical transformation from nitrite to ammonia. The Forum Article also provides a detailed discussion of the density functional theory based cluster model approach to bioinorganic reactivity. A variety of questions are considered: the resting state of enzyme and substrate binding modes, interaction with the metal site and with active-site side chains, electron- and proton-transfer events, substrate dissociation, etc.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-03-122015-08-032015-10-05
 Publikationsstatus: Erschienen
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.inorgchem.5b01506
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Inorganic Chemistry
  Kurztitel : Inorg. Chem.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 54 (19) Artikelnummer: - Start- / Endseite: 9303 - 9316 Identifikator: ISSN: 0020-1669
CoNE: https://pure.mpg.de/cone/journals/resource/0020-1669