English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  An equivariant isomorphism theorem for mod $\mathfrak p$ reductions of arboreal Galois representations

Ferraguti, A., & Micheli, G. (2020). An equivariant isomorphism theorem for mod $\mathfrak p$ reductions of arboreal Galois representations. Transactions of the American Mathematical Society, 373(12), 8525-8542. doi:10.1090/tran/8247.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0007-8603-E Version Permalink: http://hdl.handle.net/21.11116/0000-0007-8604-D
Genre: Journal Article

Files

show Files
hide Files
:
1905.00506.pdf (Preprint), 273KB
Name:
1905.00506.pdf
Description:
File downloaded from arXiv at 2020-12-07 13:08
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Ferraguti-Micheli_An equivariant isomorphism theorem for mod p reductions_2020.pdf (Publisher version), 318KB
 
File Permalink:
-
Name:
Ferraguti-Micheli_An equivariant isomorphism theorem for mod p reductions_2020.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1090/tran/8247 (Publisher version)
Description:
-

Creators

show
hide
 Creators:
Ferraguti, Andrea1, Author              
Micheli, Giacomo, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Number Theory, math.NT
 Abstract: Let $\phi$ be a quadratic, monic polynomial with coefficients in $\mathcal O_{F,D}[t]$, where $\mathcal O_{F,D}$ is a localization of a number ring $\mathcal O_F$. In this paper, we first prove that if $\phi$ is non-square and non-isotrivial, then there exists an absolute, effective constant $N_\phi$ with the following property: for all primes $\mathfrak p\subseteq\mathcal O_{F,D}$ such that the reduced polynomial $\phi_\mathfrak p\in (\mathcal O_{F,D}/\mathfrak p)[t][x]$ is non-square and non-isotrivial, the squarefree Zsigmondy set of $\phi_{\mathfrak p}$ is bounded by $N_\phi$. Using this result, we prove that if $\phi$ is non-isotrivial and geometrically stable then outside a finite, effective set of primes of $\mathcal O_{F,D}$ the geometric part of the arboreal representation of $\phi_{\mathfrak p}$ is isomorphic to that of $\phi$. As an application of our results we prove R. Jones' conjecture on the arboreal Galois representation attached to the polynomial $x^2+t$.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1905.00506
URI: https://arxiv.org/abs/1905.00506
DOI: 10.1090/tran/8247
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Transactions of the American Mathematical Society
  Abbreviation : Trans. Amer. Math. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Mathematical Society
Pages: - Volume / Issue: 373 (12) Sequence Number: - Start / End Page: 8525 - 8542 Identifier: -