Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Machine learning, alignment of covariant Lyapunov vectors, and predictability in Rikitake's geomagnetic dynamo model

Brugnago, E. L., Gallas, J. A. C., & Beims, M. W. (2020). Machine learning, alignment of covariant Lyapunov vectors, and predictability in Rikitake's geomagnetic dynamo model. Chaos, 30(8): 083106. doi:10.1063/5.0009765.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Brugnago, Eduardo L.1, Autor           
Gallas, Jason A. C.1, Autor           
Beims, Marcus W.1, Autor           
Affiliations:
1Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Deterministic dynamics
 Zusammenfassung: In this paper, the alignment of covariant Lyapunov vectors is used to train multi-layer perceptron ensembles in order to predict the duration of regimes in chaotic time series of Rikitake's geomagnetic dynamo model. The machine learning procedure reveals the relevance of the alignment of distinct covariant Lyapunov vectors for the predictions. To train multi-layer perceptron, we use a classification procedure that associates the number of maxima (or minima) inside regimes of motion with the duration of the corresponding regime. Remarkably accurate predictions are obtained, even for the longest regimes whose duration times are around 17.5 Lyapunov times. We also found long duration regimes with a distinctive statistical behavior, namely, the longest regimes are more likely to occur, a quite unusual behavior. In fact, we observed a largest regime above which no regimes were observed.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-08-032020-08-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000559328100006
DOI: 10.1063/5.0009765
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
  Andere : Chaos : an interdisciplinary journal of nonlinear science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Institute of Physics
Seiten: - Band / Heft: 30 (8) Artikelnummer: 083106 Start- / Endseite: - Identifikator: ISSN: 1054-1500
CoNE: https://pure.mpg.de/cone/journals/resource/954922836228