非表示:
キーワード:
-
要旨:
Cells of the bacterium Myxococcus xanthus organize into two types of patterns depending on their nutritional status, i.e. in the presence of nutrients cells form spreading colonies and in the absence of nutrients cells form fruiting bodies. Formation of both patterns depends on directed cell movements, which, in turn, depend on regulation of motility. M. xanthus cells harbor two motility machines, type IV pili and the A-engine, which act synergistically to generate motive force in the same direction. Periodically, the individual cells reverse their direction of movement. During a reversal the two motility machines switch polarity to generate force in the opposite direction. Recent evidence shows that at the molecular level, reversals involve pole-to-pole oscillations of motility proteins. Between reversals, these proteins localize to the cell poles to stimulate motility and in parallel with a reversal they relocalize between the poles. For two proteins, FrzS and RomR, which are part of the type IV pili and A-engine, respectively, it was directly demonstrated that they oscillate independently of each other but in synchrony, thus, providing evidence that the two motility machines switch polarity independently but synchronously. Protein oscillations are regulated and synchronized by the Frz chemosensory signal transduction system. The correct polarity of the motility systems is likely established by the MglA protein, which is a member of the Ras/Rac/Rho superfamily of small GTPases. In this scenario, MglA establishes the correct polarity of the two motility machines and the Frz-induced synchronized polarity switching maintains the correct polarity of the two motility machines.