日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Uncovering the organization of neural circuits with generalized phase locking analysis

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Ramirez-Villegas, J., Logothetis, N., & Besserve, M. (2023). Uncovering the organization of neural circuits with generalized phase locking analysis. PLoS Computational Biology, 19(4):. doi:10.1371/journal.pcbi.1010983.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0007-91AA-5 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000C-FBB3-F
資料種別: 学術論文

ファイル

表示: ファイル

作成者

表示:
非表示:
 作成者:
Safavi, S1, 著者           
Panagiotaropoulos, T1, 著者           
Kapoor, V1, 著者           
Ramirez-Villegas, JF1, 著者           
Logothetis, NK1, 著者           
Besserve, M1, 著者           
所属:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

内容説明

表示:
非表示:
キーワード: -
 要旨: Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic "field" signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings.

資料詳細

表示:
非表示:
言語:
 日付: 2023-04
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1371/journal.pcbi.1010983
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PLoS Computational Biology
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: San Francisco, CA : Public Library of Science
ページ: 45 巻号: 19 (4) 通巻号: e1010983 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1