Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study

Sparta, M., Riplinger, C., & Neese, F. (2014). Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study. Journal of Chemical Theory and Computation, 10(3), 1099-1108. doi:10.1021/ct400917j.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sparta, Manuel1, Autor           
Riplinger, Christoph2, Autor
Neese, Frank1, Autor           
Affiliations:
1Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              
2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Since the development of chiral phosphino-oxazoline iridium catalysts, which hydrogenate unfunctionalized alkenes enantioselectively, the asymmetric hydrogenation of prochiral olefins has become important in the production of chiral compounds. For the last 10 years, details of the mechanism, including formal oxidation state assignment of the metal center and the nature of intermediates and transition states have been debated. Various contributions have been given from a theoretical point of view, but due to the size of the structures, these have been forced to rely on density functional theory (DFT) methods. In our investigation of the catalytic cycle, we employ both DFT and a correlated ab initio method, namely, the newly implemented domain-based local pair natural orbital coupled-cluster theory with single and double excitations and the inclusion of perturbative triples correction (DLPNO-CCSD(T)). Our results show that the most likely active paths involve the formation of an intermediate IrV species. Furthermore, we have been able to predict the absolute configuration of the major products, and where comparison to experiment is possible, the results of our calculations agree with the enantiomeric excess obtained from hydrogenating five prochiral substrates. This work also shows that it is now possible to study catalytic reactions with untruncated models (having up to 88 atoms) at the CCSD(T) level of theory.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-10-212014-02-062014-03-11
 Publikationsstatus: Erschienen
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/ct400917j
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Theory and Computation
  Kurztitel : J. Chem. Theory Comput.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 10 (3) Artikelnummer: - Start- / Endseite: 1099 - 1108 Identifikator: ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832