English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The contribution of convection to the stratospheric water vapor: the first budget using a Global-Storm-Resolving Model

Dauhut, T., & Hohenegger, C. (2022). The contribution of convection to the stratospheric water vapor: the first budget using a Global-Storm-Resolving Model. Journal of Geophysical Research: Atmospheres, 127: e2021JD036295. doi:10.1029/2021JD036295.

Item is

Files

show Files
hide Files
:
JGR Atmospheres_2022_Dauhut.pdf (Publisher version), 2MB
Name:
JGR Atmospheres_2022_Dauhut.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
© The Authors

Locators

show

Creators

show
hide
 Creators:
Dauhut, Thibaut1, Author           
Hohenegger, Cathy1, Author           
Affiliations:
1Precipitating Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_3001851              

Content

show
hide
Free keywords: -
 Abstract: The deepest convection on Earth injects water in the tropical stratosphere, but its contribution to the global stratospheric water budget remains uncertain. The Global Storm-Resolving Model ICOsahedral Non-hydrostatic is used to simulate the moistening of the lower stratosphere for 40 days during boreal summer. The decomposition of the water vapor budget in the tropical lower stratosphere (TLS, 10°S–30°N, and 17–20 km altitude) indicates that the average moistening (+21 Tg) over the simulated 40-day period is the result of the combined effect of the vertical water vapor transport from the troposphere (+27 Tg), microphysical phase changes and subgrid-scale transport (+2 Tg), partly compensated by horizontal water vapor export (−8 Tg). The very deep convective systems, explicitly represented thanks to the employed 2.5 km grid spacing of the model, are identified using the very low Outgoing Longwave Radiation of their cold cloud tops. The water vapor budget reveals that the vertical transport, the sublimation and the subgrid-scale transport at their top contribute together to 11% of the water vapor mass input into the TLS.

Details

show
hide
Language(s): eng - English
 Dates: 2020-122022-022022-02-212022-03-16
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/2021JD036295
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Atmospheres
  Abbreviation : J. Geophys. Res. - D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 127 Sequence Number: e2021JD036295 Start / End Page: - Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1