Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Trivial improvements of predictive skill due to direct reconstruction of global carbon cycle

Spring, A., Dunkl, I., Li, H., Brovkin, V., & Ilyina, T. (2021). Trivial improvements of predictive skill due to direct reconstruction of global carbon cycle. Earth System Dynamics, 12, 1139-1167. doi:10.5194/esd-12-1139-2021.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Approval_form-Spring-ESD-2021.pdf (Korrespondenz), 614KB
 
Datei-Permalink:
-
Name:
Approval_form-Spring-ESD-2021.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
esd-2021-4.pdf (Preprint), 19MB
 
Datei-Permalink:
-
Name:
esd-2021-4.pdf
Beschreibung:
Preprint
OA-Status:
Sichtbarkeit:
Eingeschränkt ( Max Planck Society (every institute); )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
© The Authors
Lizenz:
-
:
Spring_etal_2021_Code-master.zip (Ergänzendes Material), 16MB
Name:
Spring_etal_2021_Code-master.zip
Beschreibung:
Information to help for reproducibility
OA-Status:
Sonstiges
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/zip / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
© The Authors
Lizenz:
-
:
esd-12-1139-2021.pdf (Verlagsversion), 10MB
Name:
esd-12-1139-2021.pdf
Beschreibung:
Final Revised Paper
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
© The Authors

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Spring, Aaron1, 2, Autor                 
Dunkl, István3, Autor           
Li, Hongmei2, Autor                 
Brovkin, Victor3, Autor                 
Ilyina, Tatiana2, Autor                 
Affiliations:
1IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society, ou_913547              
2Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913556              
3Climate-Biogeosphere Interaction, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_3364942              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: State-of-the-art carbon cycle prediction systems are initialized from reconstruction simulations in which state variables of the climate system are assimilated. While currently only the physical state variables are assimilated, biogeochemical state variables adjust to the state acquired through this assimilation indirectly instead of being assimilated themselves. In the absence of comprehensive biogeochemical reanalysis products, such approach is pragmatic. Here we evaluate a potential advantage of having perfect carbon cycle observational products to be used for direct carbon cycle reconstruction.









Within an idealized perfect-model framework, we define 50 years of a control simulation under pre-industrial CO2 levels as our target representing observations. We nudge variables from this target onto arbitrary initial conditions 150 years later mimicking an assimilation simulation generating initial conditions for hindcast experiments of prediction systems. We investigate the tracking performance, i.e. bias, correlation and root-mean-square-error between the reconstruction and the target, when nudging an increasing set of atmospheric, oceanic and terrestrial variables with a focus on the global carbon cycle explaining variations in atmospheric CO2. We compare indirect versus direct carbon cycle reconstruction against a resampled threshold representing internal variability. Afterwards, we use these reconstructions to initialize ensembles to assess how well the target can be predicted after reconstruction. Interested in the ability to reconstruct global atmospheric CO2, we focus on the global carbon cycle reconstruction and predictive skill.









We find that indirect carbon cycle reconstruction through physical fields reproduces the target variations on a global and regional scale much better than the resampled threshold. While reproducing the large scale variations, nudging introduces systematic regional biases in the physical state variables, on which biogeochemical cycles react very sensitively. Global annual surface oceanic pCO2 initial conditions are indirectly reconstructed with an anomaly correlation coefficient (ACC) of 0.8 and debiased root mean square error (RMSE) of 0.3 ppm. Direct reconstruction slightly improves initial conditions in ACC by +0.1 and debiased RMSE by −0.1 ppm. Indirect reconstruction of global terrestrial carbon cycle initial conditions for vegetation carbon pools track the target by ACC of 0.5 and debiased RMSE of 0.5 PgC. Direct reconstruction brings negligible improvements for air-land CO2 flux. Global atmospheric CO2 is indirectly tracked by ACC of 0.8 and debiased RMSE of 0.4 ppm. Direct reconstruction of the marine and terrestrial carbon cycles improves ACC by 0.1 and debiased RMSE by −0.1 ppm. We find improvements in global carbon cycle predictive skill from direct reconstruction compared to indirect reconstruction. After correcting for mean bias, indirect and direct reconstruction both predict the target similarly well and only moderately worse than perfect initialization after the first lead year.









Our perfect-model study shows that indirect carbon cycle reconstruction yields satisfying initial conditions for global CO2 flux and atmospheric CO2. Direct carbon cycle reconstruction adds little improvements in the global carbon cycle, because imperfect reconstruction of the physical climate state impedes better biogeochemical reconstruction. These minor improvements in initial conditions yield little improvement in initialized perfect-model predictive skill. We label these minor improvements due to direct carbon cycle reconstruction trivial, as mean bias reduction yields similar improvements. As reconstruction biases in real-world prediction systems are even stronger, our results add confidence to the current practice of indirect reconstruction in carbon cycle prediction systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-012021-022021-092021-112021-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.5194/esd-12-1139-2021
BibTex Citekey: SpringDunklEtAl2021
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Climate-Carbon Interactions in the Current Century (4C)
Grant ID : 821003
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : COMFORT
Grant ID : 820989
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : CRESCENDO
Grant ID : 641816
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Earth System Dynamics
  Andere : Earth Syst. Dyn.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Copernicus GmbH
Seiten: - Band / Heft: 12 Artikelnummer: - Start- / Endseite: 1139 - 1167 Identifikator: ISSN: 2190-4979
CoNE: https://pure.mpg.de/cone/journals/resource/2190-4979