English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A note on the complexity of h-cobordisms

Schwartz, H. R. (2020). A note on the complexity of h-cobordisms. Algebraic & Geometric Topology, 20(7), 3313-3327. doi:10.2140/agt.2020.20.3313.

Item is

Files

show Files
hide Files
:
Schwartz_A note on the complexity of h-cobordisms_2020.pdf (Publisher version), 396KB
Name:
Schwartz_A note on the complexity of h-cobordisms_2020.pdf
Description:
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer Allianz- bzw. Nationallizenz frei zugänglich. / This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence respectively.
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.2140/agt.2020.20.3313 (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Schwartz, Hannah R.1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Geometric Topology
 Abstract: We show that the number of double points of smoothly immersed 2-spheres
representing certain homology classes of an oriented, smooth, closed,
simply-connected 4-manifold X must increase with the complexity of
corresponding h-cobordisms from X to X. As an application, we give results
restricting the minimal number of double points of immersed spheres in
manifolds homeomorphic to rational surfaces.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Issued
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1811.02753
DOI: 10.2140/agt.2020.20.3313
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Algebraic & Geometric Topology
  Abbreviation : Algebr. Geom. Topol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Mathematical Sciences Publishers
Pages: - Volume / Issue: 20 (7) Sequence Number: - Start / End Page: 3313 - 3327 Identifier: -