English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Spectroscopic and Quantum Chemical Study of the Ni(PPh2NC6H4CH2P(O)(OEt)22)2 Electrocatalyst for Hydrogen Production with Emphasis on the NiI Oxidation State

Kochem, A., Neese, F., & van Gastel, M. (2014). Spectroscopic and Quantum Chemical Study of the Ni(PPh2NC6H4CH2P(O)(OEt)22)2 Electrocatalyst for Hydrogen Production with Emphasis on the NiI Oxidation State. The Journal of Physical Chemistry C, 118(5), 2350-2360. doi:10.1021/jp411710b.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kochem, Amélie1, Author           
Neese, Frank1, Author           
van Gastel, Maurice1, Author           
Affiliations:
1Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              

Content

show
hide
Free keywords: -
 Abstract: The bis(diphosphine)nickel catalyst first investigated by DuBois and co-workers [DuBois, M. R.; DuBois, D. L. Chem. Soc. Rev. 2009, 38, 62] is arguably one of the most promising molecular catalysts for hydrogen production. It features a low overpotential and, in its most recent variation, a high turnover number of 105 s–1 [Helm, M. L.; Stewart, M. P.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Science 2011, 333, 863]. The complex features two reversible one-electron reductions. It is believed that all accessible oxidation states (2+, 1+, 0) of nickel are involved in the proposed catalytic cycle. In this article we focus on the paramagnetic NiI state, for which few experimental studies have been performed. By a combination of modern EPR and quantum chemical methods, it is established that the stable NiI species does not feature a hydride ligand. Furthermore, hydrogen evolution already starts upon addition of acid to the NiI state even without the presence of additional reducing equivalents. The implications for the catalytic cycle are discussed.

Details

show
hide
Language(s): eng - English
 Dates: 2013-11-282014-01-222014-02-06
 Publication Status: Published in print
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/jp411710b
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physical Chemistry C
  Abbreviation : J. Phys. Chem. C
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 118 (5) Sequence Number: - Start / End Page: 2350 - 2360 Identifier: ISSN: 1932-7447
CoNE: https://pure.mpg.de/cone/journals/resource/954926947766