English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  On the set of divisors with zero geometric defect

Huynh, D. T., & Vu, D.-V. (2021). On the set of divisors with zero geometric defect. Journal für die reine und angewandte Mathematik, 771, 193-213. doi:10.1515/crelle-2020-0017.

Item is

Files

show Files
hide Files
:
arXiv:1907.08740.pdf (Preprint), 247KB
 
File Permalink:
-
Name:
arXiv:1907.08740.pdf
Description:
File downloaded from arXiv at 2021-01-12 15:23
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Huynh-Vu_On the set of divisors with zero geometric defect_2021.pdf (Publisher version), 336KB
 
File Permalink:
-
Name:
Huynh-Vu_On the set of divisors with zero geometric defect_2021.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1515/crelle-2020-0017 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Huynh, Dinh Tuan1, Author           
Vu, Duc-Viet, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Complex Variables, Algebraic Geometry, Dynamical Systems
 Abstract: Let $f: \mathbb{C} \to X$ be a transcendental holomorphic curve into a complex projective manifold $X$. Let $L$ be a very ample line bundle on $X$. Let $s$ be a very generic holomorphic section of $L$ and $D$ the zero divisor given by $s$. We prove that the \emph{geometric} defect of $D$ (defect of
truncation $1$) with respect to $f$ is zero. We also prove that $f$ almost misses general enough analytic subsets on $X$ of codimension $2$.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1907.08740
DOI: 10.1515/crelle-2020-0017
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal für die reine und angewandte Mathematik
  Abbreviation : J. reine angew. Math.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: De Gruyter
Pages: - Volume / Issue: 771 Sequence Number: - Start / End Page: 193 - 213 Identifier: -