English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  On the fitness of informative cues in complex environments

Mafessoni, F., Lachmann, M., & Gokhale, C. S. (2021). On the fitness of informative cues in complex environments. Journal of Theoretical Biology, 527: 110819. doi:10.1016/j.jtbi.2021.110819.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Mafessoni, Fabrizio1, Author           
Lachmann, Michael, Author
Gokhale, Chaitanya S.2, Author           
Affiliations:
1Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society, ou_1497672              
2Research Group Theoretical Models of Eco-Evolutionary Dynamics, Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2355692              

Content

show
hide
Free keywords: Shannon information; Nonlinear fitness; Stochastic switching; Inaccessible phenotypes; Bet-hedging
 Abstract: To be able to deal with uncertainty is of primary importance to all organisms. When cues provide information about the state of the environment, organisms can use them to respond flexibly. Thus information can provide fitness advantages. Without environmental cues, an organism can reduce the risks of environmental uncertainty by hedging its bets across different scenarios. Risk mitigation is then possible by adopting a life-history of bet-hedging, either randomly switching between phenotypes (diversifying bet-hedging) or adopting intermediate phenotypes (conservative bet-hedging). Hence, understanding patterns of bet-hedging is necessary in order to quantify the fitness benefit of environmental cues, since it provides a baseline fitness in the absence of informative cues. Quantifying fitness benefits in terms of mutual information reveals deep connections between Darwinian evolution and information theory. However, physiological constraints or complex ecological scenarios often lead to the number of environmental states to exceed that of potential phenotypes, or a single intermediate phenotype is adopted, as in the case of conservative bet-hedging. Incorporating these biological complexities, we generalise the relationship between information theory and Darwinian fitness. Sophisticated bet-hedging strategies combining diversifying and conservative bet-hedging - can then evolve. We show that, counterintuitively, environmental complexity can reduce, rather than increase, the number of phenotypes that an organism can adopt. In conclusion, we develop an information-theoretic extensible approach for investigating and quantifying fitness in ecological studies.

Details

show
hide
Language(s): eng - English
 Dates: 2021-02-112021-06-152021-06-262021-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.jtbi.2021.110819
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Theoretical Biology
  Abbreviation : J. Theor. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Elsevier
Pages: - Volume / Issue: 527 Sequence Number: 110819 Start / End Page: - Identifier: ISSN: 0022-5193
CoNE: https://pure.mpg.de/cone/journals/resource/954922646048