English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  StyleRig: Rigging StyleGAN for 3D Control over Portrait Images

Tewari, A., Elgharib, M., Bharaj, G., Bernard, F., Seidel, H.-P., Pérez, P., et al. (2020). StyleRig: Rigging StyleGAN for 3D Control over Portrait Images. Retrieved from https://arxiv.org/abs/2004.00121.

Item is

Files

show Files
hide Files
:
arXiv:2004.00121.pdf (Preprint), 5MB
Name:
arXiv:2004.00121.pdf
Description:
File downloaded from arXiv at 2021-01-15 08:46 CVPR 2020 (Oral). Project page: https://gvv.mpi-inf.mpg.de/projects/StyleRig/
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Tewari, Ayush1, Author           
Elgharib, Mohamed1, Author           
Bharaj, Gaurav2, Author           
Bernard, Florian1, Author           
Seidel, Hans-Peter1, Author                 
Pérez, Patrick2, Author
Zollhöfer, Michael2, Author           
Theobalt, Christian1, Author                 
Affiliations:
1Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: Computer Science, Computer Vision and Pattern Recognition, cs.CV,Computer Science, Graphics, cs.GR
 Abstract: StyleGAN generates photorealistic portrait images of faces with eyes, teeth,
hair and context (neck, shoulders, background), but lacks a rig-like control
over semantic face parameters that are interpretable in 3D, such as face pose,
expressions, and scene illumination. Three-dimensional morphable face models
(3DMMs) on the other hand offer control over the semantic parameters, but lack
photorealism when rendered and only model the face interior, not other parts of
a portrait image (hair, mouth interior, background). We present the first
method to provide a face rig-like control over a pretrained and fixed StyleGAN
via a 3DMM. A new rigging network, RigNet is trained between the 3DMM's
semantic parameters and StyleGAN's input. The network is trained in a
self-supervised manner, without the need for manual annotations. At test time,
our method generates portrait images with the photorealism of StyleGAN and
provides explicit control over the 3D semantic parameters of the face.

Details

show
hide
Language(s): eng - English
 Dates: 2020-03-312020-06-132020
 Publication Status: Published online
 Pages: 13 p.
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2004.00121
BibTex Citekey: Tewari_2004.00121
URI: https://arxiv.org/abs/2004.00121
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show