English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Reply to Mouesca et al.: Electronic structure of the proximal [4Fe-3S] cluster of O2-tolerant [NiFe] hydrogenases

Pandelia, M.-E., Bykov, D., Izsak, R., Infossi, P., Giudici-Orticoni, M.-T., Bill, E., et al. (2013). Reply to Mouesca et al.: Electronic structure of the proximal [4Fe-3S] cluster of O2-tolerant [NiFe] hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 110(28): E2539. doi:10.1073/pnas.1306038110.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Pandelia, Maria-Eirini1, Author              
Bykov, Dmytro2, Author              
Izsak, Robert2, Author              
Infossi, Pascale3, Author
Giudici-Orticoni, Marie-Thérèse3, Author
Bill, Eckhard2, Author              
Neese, Frank2, Author              
Lubitz, Wolfgang1, Author              
Affiliations:
1Research Department Lubitz, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023873              
2Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, ou_3023886              
3Laboratoire de Bioénergétique et Ingénierie des Protéines, Centre National de la Recherche Scientifique, Aix-Marseille University, 13402 Marseille Cedex 20, France, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Mouesca et al. (1) criticize our analysis (2) of the superoxidized proximal [4Fe-3S]5+ cluster in O2-tolerant hydrogenases (A) that was also studied in Volbeda et al. (3), albeit from a different organism. Both analyses were based on broken-symmetry (BS) density functional theory (DFT) calculations (2, 3), which presently is the only feasible alternative for the treatment of complex systems like A. However, BS-DFT is a crude approach and we regard the differences in refs. 2 and 3 as subtle rather than major. The critique raised in Mouesca et al. (1) that our cluster model was too small and incorporated spurious constraints is unfounded. In Volbeda et al. (3), only three additional amino acid residues in the third coordination sphere were included, but their importance was not demonstrated. Furthermore, our constraints allowed for sufficient structural relaxation and the link atoms used in the quantum mechanical/molecular mechanical investigation (3) imposed almost identical constraints. The allegation that our selection of BS solution Ox2_24 over OX2_14 (favored in ref. 3) on the basis of “chemical intuition” and “weak isomer shift considerations” is factually wrong. Instead, we analyzed relative energies and four Mössbauer parameters (δ, ΔEQ, η, A) for each iron site, whereas in Volbeda et al. (3) only energetics and unsigned ΔEQ values were used. The energy difference in favor of OX2_14 (3) is below 2 kcal/mol, which is well within the uncertainty of BS-DFT. Thus, we have presented more solid evidence for our choice than the authors of ref. 3. Because our quantum mechanical model was not inferior to that of Volbeda et al. (3), we have no reason to revoke deprotonation of GLU82. Our choice was derived from a comprehensive comparison of a wide range of spectroscopic parameters, and no conclusive evidence against it was presented in Mouesca et al. (1). The authors of refs. 1 and 3 argue in favor of OX2_14 as leading to an explanation of the cluster’s reactivity. However, no sound conclusions on transition states or mechanisms can be drawn from the analysis of the magnetic properties of one reactant only. Thus, the argument is invalid. Mouesca et al. (1) argue that OX2_24 emerges from unrecognized, unwanted charge migration, which leads to “local spin state 3/2, instead of 5/2, for Fe2,” and therefore is an “artificially trapped electronic state.” We note that: (i) the magnetic properties are well explained by OX2_24; (ii) the reactivity argument is invalid; and (iii) the local spin is not an observable and BS-DFT does not conserve the total spin but only its projection onto the z axis. The assignment of oxidation states and local spins in refs. 1 and 3 relies on differences as small as 0.1 electrons in Mulliken spin populations. In our experience, differences of this order are not conclusive. Importantly, the lower spin population on Fe2 in OX2_24 is simply a result of spin-canting, as well as (partial) formation of covalent chemical bonds between spin-carrying fragments. Related effects are predominant in BS-DFT calculations on antiferromagnetic clusters. The claim that our OX2_24 has SFe2 = 3/2 is therefore unsupported and unrealistic. In conclusion, although we do not exclude future refinements of our understanding of the [4Fe-3S] cluster, the arguments brought forward in Mouesca et al. (1) are insufficient to invalidate our original analysis (2).

Details

show
hide
Language(s): eng - English
 Dates: 2013-07-09
 Publication Status: Published in print
 Pages: 1
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1073/pnas.1306038110
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : PNAS
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 110 (28) Sequence Number: E2539 Start / End Page: - Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230