English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Phasic activation of the locus coeruleus attenuates the acoustic startle response by increasing cortical arousal

Yang, M., Logothetis, N., & Eschenko, O. (2021). Phasic activation of the locus coeruleus attenuates the acoustic startle response by increasing cortical arousal. Scientific Reports, 11: 1409, pp. 1-14. doi:10.1038/s41598-020-80703-5.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0007-B2CA-C Version Permalink: http://hdl.handle.net/21.11116/0000-0007-B2CB-B
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Yang, M1, 2, Author              
Logothetis, NK1, 2, Author              
Eschenko, O1, 2, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: An alerting sound elicits the Acoustic Startle Response (ASR) that is dependent on the sound volume and organisms' state, which is regulated by neuromodulatory centers. The locus coeruleus (LC) neurons respond to salient stimuli and noradrenaline release affects sensory processing, including auditory. The LC hyperactivity is detrimental for sensorimotor gating. We report here that priming microstimulation of the LC (100-ms at 20, 50, and 100 Hz) attenuated the ASR in rats. The ASR reduction scaled with frequency and 100 Hz-stimulation mimicked pre-exposure to a non-startling tone (prepulse). A rapid (~ 40 ms) EEG desynchronization following the LC stimulation suggested that the ASR reduction was due to elevated cortical arousal. The effects of LC stimulation on the ASR and EEG were consistent with systematic relationships between the ASR, awake/sleep state, and the cortical arousal level; for that matter, a lower ASR amplitude corresponded to a higher arousal level. Thus, the LC appears to modulate the ASR circuit via its diffuse ascending projections to the forebrain saliency network. The LC modulation directly in the brainstem and/or spinal cord may also play a role. Our findings suggest the LC as a part of the brain circuitry regulating the ASR, while underlying neurophysiological mechanisms require further investigation.

Details

show
hide
Language(s):
 Dates: 2021-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41598-020-80703-5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Scientific Reports
  Abbreviation : Sci. Rep.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Publishing Group
Pages: - Volume / Issue: 11 Sequence Number: 1409 Start / End Page: 1 - 14 Identifier: ISSN: 2045-2322
CoNE: https://pure.mpg.de/cone/journals/resource/2045-2322